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CHAPTER 1 

INTRODUCTION 

In the era of High Throughput Sequencing (HTS), it is becoming increasingly 

clear that the downstream analysis of variants from sequencing is becoming more costly 

and challenging than sequence data generation itself [1]. The fundamental challenge has 

shifted from one of prioritization of candidate regions to interrogate via Sanger 

sequencing, to one of hypothesizing likely causative regions that can be used to refine the 

list of variations resulting from HTS. The main idea is to utilize phenotypes in the 

downstream analysis of variants to better-identify disease-causing mutations. The 

objective of linking phenotype to genotype is to make it possible to leverage a patient’s 

phenotype to increase the diagnostic power of large-scale genetic screening – i.e., to 

ultimately determine a patient’s molecularly-validated genotype upon which to base 

treatment decisions. The main goal of this thesis is to develop a framework for the 

prediction of genotype from phenotype – specifically in the case of Non-syndromic 

Hearing Loss (NSHL) – and develop a technique to discover novel sub-phenotypes and 

genotypes (subclasses) to improve the prediction and understanding of NSHL. 

Patients with NSHL exhibit a large degree of diversity in observed phenotype 

which has been shown to associate with specific genetic causes [2]. For instance, patients 

with mutations in the DFNA2A loci have a typical hearing loss pattern that is more 

pronounced in the higher frequencies and progresses with age. In contrast, patients with 

mutations in the DFNA6/14/38 locus have a very different hearing loss pattern which 

only effects the lower frequencies (nominally below 2 kHz). 

To exploit this heterogeneity and prioritize loci for screening, a method, software 

tool and website was developed called AudioGene [3]for ranking loci using the patient’s 

hearing loss phenotype as reported in a standard audiogram. The accuracy of AudioGene 

for predicting the top three candidate loci was 68% when using an MI-SVM, compared to 
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44% using a Majority classifier for Autosomal Dominant Non-syndromic Hearing loss 

(ADNSHL). The ADNSHL dataset contained over 1,400 patients harboring mutations in 

34 of the 64 known loci. The method was extended to predict the mutation type for 

patients with mutations in the Autosomal Recessive Non-syndromic Hearing Loss locus 

DFNB1, and had an accuracy of 83% compared to 50% for a Majority classifier when the 

classes were down-sampled to contain equal numbers of patients. The DFNB1 locus had 

a large class imbalance with one class containing approximately 93% of the patients; to 

reduce the effects of class imbalance the patients were down-sampled which resulted in 

better performance. 

There are several challenges in predicting genotype from phenotype and these 

challenges likely impede further improvements in AudioGene. First, there exists a 

complex relationship between genotypes and phenotypes, and in cases of Mendelian 

diseases, a large variability in the clinical phenotype can often be seen [4]. With HTS, it 

is becoming cost-effective to explore complex models of genetic diseases, such as genetic 

factors that modulate the phenotype, that can be associated with the variability observed 

in the phenotype [5]. Second, the resolution at which the genotype is defined may not 

adequately reflect the way in which the phenotype actually segregates. For NSHL the 

genotype is typically defined by the genomic locus containing the putative mutation. In 

some cases, the locus level can be too coarse, where for instance differences in phenotype 

are caused by different mutation types within a single large locus and/or gene [6].  

To allow the phenotype data to drive the discovery of subtypes (of phenotype and 

genotype) and identify better class labels, a novel clustering technique was developed 

called Hierarchal Surface Clustering (HSC), and has been shown to be particularly well-

suited to clustering using audiometric data. Along with HSC, a novel 3D surface 

visualization technique was developed to allow a human expert to guide exploration of 

the sub-phenotype space, by observing the progression of the hearing loss with age. 

Using simulated data it was shown to perform better or have comparable performance to 
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K-means and spectral clustering. To evaluate HSC using real world data, a previously 

known difference in the phenotype among patients with mutations in the DFNA2A locus 

was observed for different mutation types [6]. A gold standard clustering assignment was 

generated by assigning patients in DFNA2A to clusters based on their mutation type – 

truncating or non-truncating. The Adjusted Rand Index was used to evaluate the 

clustering assignment found via the different clustering techniques versus the gold 

standard. HSC had the highest ARI with a value of 0.459 compared to 0.187 for spectral 

clustering and 0.103 for K-means clustering. When applying HSC to the DFNA8/12 

locus, two clusters were found for DFNA8/12 that exhibited different phenotypes, which 

could not be attributed to any environmental or other known genetic causes. This 

demonstrates the ability for HSC to utilize phenotype data to drive the discovery of 

potential subgenotypes and genetic modifiers and to serve as a hypothesis-generating 

tool. 

The two methods developed in this thesis, AudioGene and HSC, complement 

each other with AudioGene being a tool for prioritizing loci using phenotypic data and 

HSC developed as a tool to explore the phenotype to identify novel subclasses or genetic 

modifiers that could eventually be used to improve AudioGene. The general structure of 

the topics covered in the subsequent chapters are as follows: Chapter 2 contains the 

relevant clinical background and the necessary machine learning background, Chapter 3 

discusses the method prediction of genotype from phenotype called AudioGene, Chapter 

4 describes the hierarchal surface method developed for discovery novel subclasses along 

with a novel method for visualization progression of hearing loss, and finally Chapter 5 is 

the conclusion. 
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CHAPTER 2 

BACKGROUND 

2.1 Clinical Background 

2.1.1 Measuring Hearing 

An audiometer is a device used to measure hearing and produces tones of 

calibrated frequency and intensity. In order for an audiometer to be used for clinical 

diagnosis, it must meet the specifications listed in ANSI S3.6-2004 [7]. The American 

Speech-Language-Hearing Association (ASLHA) publishes guidelines for measuring 

pure-tone thresholds, but do not required them to be followed [8]. A threshold is defined 

as the lowest decibel hearing level at which responses are elicited in at least fifty percent 

of the measurements, when no other sound is present [8]. The conical set of pure-tones 

measured is: 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz and 8 kHz. The recommended order 

of frequencies measured is as follows: measure 1 kHz to 8 kHz, repeat 1 kHz, then 

measure 500 Hz down to 250 Hz, and then repeat 1 kHz. The repeated 1 kHz threshold 

measurement step is to validate that the patient is responding appropriately and that the 

measurements are consistent. It is recommend that if a difference of more than 20 dB 

between two octaves is found then interoctive frequencies should be measured (1.5 kHz, 

3 kHz, and 6 kHz). After threshold values are obtained, the values are plotted on an 

audiogram with the frequencies measured on the x-axis and the hearing loss in dB loss, 

also referred to as dB Hearing Level, on the y-axis with 0 starting at the top. It has been 

observed that a test re-test variability of between 5-10 dB is present at every frequency. 

[9]. 

Interestingly, the first modern audiometer was developed at the University of 

Iowa by Carl E. Seashore in 1897 [10], and was designed to measure “keenness of 

hearing”. It consisted of an earpiece from a telephone receiver, battery, induction coil, 

galvanometer, resistance coil, and a few switches. The resolution of intensity was limited 
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to forty levels of sound intensity. The sound was generated by repeatedly turning a knob 

that interrupted a contact to create a clicking sound, or specific tones produced by 

connecting the audiometer to an external tuning fork apparatus.  

Seashore’s audiometer was limited to laboratory testing [11], and the first 

commercially available audiometer was the Western Electric 1-A and was developed in 

the 1922 with the advent of the vacuum tube [12]. The original procedure for the 1-A 

audiometer was to record the hearing loss as percentage of normal hearing at each 

frequency with 100% indicating normal hearing. The plot looks almost identical to the 

current audiogram with the exception of the y-axis being percent hearing instead of dB 

loss. In 1926, the standard audiogram that is still be used to day was finally developed 

with standard units of hearing loss or hearing level in decibels being defined [13]. The 

Figure 1. The absolute threshold of hearing (ATH)–minimum sound level at which the 
pure tone is perceived–plotted for frequencies ranging from 15 Hz to 16 kHz. 
The lower the sound pressure level, the quieter the sound that can be 
perceived. The hearing loss recorded on an audiogram is relative to the ATM. 
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decibel value used to measure hearing loss is relative to the absolute threshold of hearing 

(ATH)–minimum sound intensity that can be heard–of each frequency. The plot of the 

ATH versus frequency can be seen in Figure 1. Smaller sound pressure levels (SPL) 

values coincide with quieter sounds, and the most sensitive frequencies are between 1 

kHz and 4 kHz. 

2.1.2 Genetic Hearing Loss 

Hearing loss is defined as the reduced hearing acuity during auditory testing. A 

person’s hearing acuity is classified as normal when it falls within 20 dB of hearing loss, 

and hearing loss otherwise termed: mild (20-40 dB), moderate (41-55 dB), moderately 

severe (56-70 dB), severe (71-90 dB) or profound (>90 dB). Hearing loss can be further 

characterized as low frequency (<500Hz), mid-frequency (501-2000Hz) or high 

frequency (>2000Hz) [14]. Hearing loss can be caused by genetic or environmental 

factors. Genetic hearing loss is classified by the mode of inheritance: Recessive, 

Dominant, X-linked, and mitochondrial [4]. Autosomal Recessive Non-syndromic 

Hearing Loss (ARNSHL) accounts for approximately 77-93% of inherited hearing loss 

cases in neonates, and Autosomal Dominant Non-syndromic Hearing Loss (ADNSHL) 

accounts for about 10-20% of the cases [15]. Fractional percentages of cases are caused 

by mutations that are X-linked or in the mitochondria. For the scope of this thesis only 

non-syndromic hearing loss is considered, and therefore syndrome hearing loss, such as 

Ushers syndrome will not be discussed.  

2.1.2.1 Autosomal Recessive Non-syndromic Hearing Loss 

Mutations in 42 different genes have been reported as causes of Autosomal 

Recessive Non-syndromic Hearing Loss (ARNSHL). Of the 42 genes, mutations in 

GJB2, DFNB1 are the most prevalent cause of ARNSHL [15]. Previously, mutations in 

DFNB1 have been reported to account for between 20%-50% of all ARNSHL cases 

varying by population [16]. The most common mutation is a homozygous 35delG 
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mutation, and is estimated to account for up to 70% of the DFNB1 related cases in the 

Caucasian population [2]. The gap junction protein 2, also know as Connexin 26, is the 

protein product of GJB2 and is thought to be responsible for maintaining the correct K+ 

ion levels in the inner ear [15]. Different mutations within GJB2 have been shown to 

have varying phenotypes with the majority being high frequency hearing loss [2]. When 

grouped by mutation type, the most profound hearing loss was seen in patients with 

homozygous truncation mutations, whereas homozygous non-truncating mutations had 

less profound hearing loss.  

2.1.2.2 Autosomal Dominant Non-syndromic Hearing Loss 

For autosomal dominant non-syndromic (ADNSHL), no single gene accounts for 

the majority of cases.  There are currently 64 ADNSHL-mapped loci, with genes 

identified for only 34 of the loci.  Current data suggest that of these 25 genes, mutations 

in WFS1 (DFNA6/14/38), KCNQ4 (DFNA2A), and COCH (DFNA9) are somewhat 

more common as causes of ADNSHL in comparison to the other 21 genes [16]. 

Interestingly, mutations in a few genes such as WFS1, COCH, and TECTA cause an 

easily recognizable hearing loss patterns [3].  

 The KCNQ4 gene or DFNA2A locus is a 695 amino acid protein expressed in the 

outer sensory hair cells and is responsive for recycling K+ ions after the stimulation of 

the hair cells [17]. The general phenotype for DFNA2A hearing impairment is 

progressive hearing loss at all frequencies with more attenuation at higher frequencies 

[18]. Patients with truncating mutations exhibit a distinctive hearing loss pattern with 

only high frequency hearing loss with no progression with age [6].  

 The COCH (DFNA9) gene encodes for the cochin protein, an extracellular 

protein, and has been found to be the most abundant protein in the inner ear [19]. It is not 

completely understood how mutations in DFNA9 cause hearing loss, but deposits in the 

inner ear that consist of cochin protein have been found in patients with DFNA9 
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mutations [20]. The clinical presentation of DFNA9 related hearing loss is a flat 

progression with age that is uniform.  

 DFNA8/12 contains the TECTA gene and has a clinical presentation that is 

described as “U”-shaped or “cookie bite” because the hearing loss is most pronounced in 

the mid frequencies [18]. The TECTA gene encodes for α-tectorin and is expressed in the 

tectorial membrane (TM), an extracellular matrix that runs the length of the cochlea. 

Mutations in different domains of the protein have been suggested to cause variations in 

the phenotype with mutations in the ZP domain showing mid-frequency hearing loss 

whereas mutations the ZA domain having high frequency hearing loss [21]. 

 In contrast, DFNA6/14/38 is one of only three known loci to be associated with 

low-frequency hearing loss [22]. The gene within DFNA6/14/38 is WFS1 and is 

expressed in many other tissues such as the brain and pancreas. Mutations in WFS1 are 

also responsible for Wolfram syndrome type 1. The general hearing loss phenotype of 

patients with mutations in DFNA6/14/38 is low frequency hearing loss at frequencies at 

and below 2 kHz. Patients typically retained normal speech understanding and in some 

cases are unaware of their hearing loss until older age or when high frequency noise 

induced hearing loss occurs [23]. The current function of the WFS1 in hearing is still 

unknown, but its protein product wolframin has been localized to the endoplasmic 

reticulum–an organelle in many eukaryotic cells [23]. The low frequency hearing loss 

phenotype has been suggested through function studies to be caused by a reduction in 

woframin [24,25]. 

2.1.3 Diagnosis of Genetic Hearing Loss 

With the advent of next generation sequencing platforms such as Illumina’s 

HiSeq and ABI’s SOLiD sequencers, the cost of sequencing the whole exome – all 

protein coding regions in the genome – has been significantly reduced [26]. The major 

challenge after sequence generation is the cost of post-sequencing analysis with some 
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proclaiming the $1,000 genome with a $100,000 analysis cost [1].  Many efforts have 

focused on better downstream filtering techniques, such as filtering using allele frequency 

within 1,000 Genomes data, using family structure for segregating mutations, and using 

scores of pathogenicity of variants to obtain fewer variants for validation [26]. Even with 

these standard techniques of filtering, around 2% of the average 24,000 identified 

variants via exome sequencing are found to be “novel” – mutations that have not be 

previously reported [26].  

At the University of Iowa, OtoSCOPE [27] was developed as a cost effective 

genetic test to screen all genes related to hearing loss and has a current cost of $1,500 

[28]. The general steps of OtoSCOPE include an optimized pipeline with targeted DNA 

capture, sequencing, and post sequencing analysis of all known hearing loss genes. 

Targeted capture of the exons for all hearing loss genes, including all known isoforms, 

was done using SureSelect solution based sequence capture. Sequencing is performed 

using the Illumina GAII sequencing platform, and the resulting reads were mapped using 

BWA [29] and variant call was done using GATK [30]. If no previously reported 

deafness causing mutation were found, then the variants of unknown significance (VUS) 

were ranked by type of change (non-synonymous, splice-site, or frameshift deletion), and 

then based on allelic frequency within known populations including the 1000 Genomes 

[31] and the Exome Variant Server [24] database. Pathogenic scores were assigned to 

VUS using BLOSUM, SIFT, PolyPhen2, and Align-GVGD. Finally, if multiple family 

members were also sequenced, then VUSs were further filtered based on the expected 

segregation within the family based on the observed mode of inheritance. Finally, the 

algorithm that is described in Chapter 3 was used as a phenotypic filter to predict the 

likely genes and/or loci that harbor the putative mutation. Once a VUS is suspected to be 

the putative mutation, its is validated using Sanger sequencing [32]. 
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2.2 Machine Learning Background 

2.2.1 Supervised Machine Learning 

Supervised machine learning deals with the task of training a mathematical model 

that can be used by a computational framework to predict the labels for a set of unlabeled 

instances.  The true label of each model-training instance is assumed to be known. A 

single instance in either the training or unlabeled dataset consists of a vector of feature 

values. The feature vectors are composed of an ordered set of attributes that may include 

a mixture of categorical (e.g., textual labels) or continuous (e.g., numerical) data types. 

The label of the instance is called the class and is usually a categorical field but often 

denoted as -1 or 1 for binary class problems. Classifiers are not limited to predicting only 

two classes. Multiple classes can be predicted but usually require an indirect strategy to 

utilize binary classifiers in a procedure that integrates the results of a set of classifiers, if 

the classifier cannot be extended to predict multiple classes directly. 

2.2.1.1 Classifiers  

A classifier is a function that maps instances to discrete classes. Before a classifier 

can be used to predict the labels of unlabeled data, it must first be trained utilizing a 

training set for which the label is known for a representative set of instances. There are 

exceptions, such as K-nearest neighbors [33] but this is the exception, not rule. While 

there have been many classifiers proposed, implemented and described in the literature 

and in practice, within the scope of this thesis the following classifiers were used and will 

be described briefly in this section for completeness: Support Vector Machines (SVM), 

Random Forest (RF), Bagging, and Majority. The simplest classifier is the Majority 

Classifier, which predicts the majority class regardless of the features of the unlabeled 

instance and is used as a a sort of “base line” against which all other classifiers may be 

compared. 
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A Support Vector Machine (SVM) [34] is a linear classifier that finds the 

hyperplane that separates the classes in the feature space with the widest margin possible. 

In practice this margin is relaxed to a soft margin that allows for finding a hyper plane in 

the presence of classes that are not strictly linearly separable. The instance (features) that 

lie closest to the margin are called “support vectors” (SVs). The desired hyper plane can 

be defined in terms of the sum of the dot products of the SVs and the instance being 

classified, multiplied by parameters learned during training.  The dot product can be 

replaced with an arbitrarily complex “kernel function” that allows the SVM to find a non-

linear decision boundary. In order to guarantee that the SVM will converge towards a 

globally optimal solution, the kernel function must satisfy the Mercer Conditions [35]. 

Under the standard SVM formulation, the kernel function is often referred to as a linear 

kernel. Other example kernels include higher order and degree polynomials, and radial 

basis functions (RBFs). A polynomial kernel finds a hyper plane that is a polynomial of a 

specific degree, and an RBF kernel can be thought of as finding hyper spheres that 

separate the classes. 

Bagging is an ensemble classification technique that is an acronym for steps of 

the algorithm bootstrap aggregating [36]. An ensemble classifier combines the 

predictions of multiple (usually weaker) classifiers. Bagging generates predictions by  

treating the output of the multiple classifiers as equally weighted votes, in an “election” 

from which the final class predicted is the one that gains the majority “vote”. The first 

step in training is called bootstrapping and is the process of generating a number of 

datasets that contain a random subset of the training set which are sampled with 

replacement. Each of the bootstrapped datasets are then used to train a different classifier, 

which is typically some form of a decision tree [37] but is not limited to decision trees. 

For unknown instances, the class is predicted based on which class is predicted most 

frequently from the trained classifiers.  
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The random forest classifier combines the bagging algorithm with random 

subspace mapping and uses decision trees as the classifier, hence the name random forest 

[38]. The bootstrapping step is performed in the same manner as bagging. The standard 

decision tree classifier is modified such that each node is determined using a random 

subset of all the features present. This prevents the forest of decision trees, in the 

presence a few highly informative features, from consistently using the same subset of 

features and leads to a set of diverse decision trees. Again, the prediction for an unknown 

instance is based on the most frequent class predicted by the decision trees. 

All the classifiers described here are designed to be used for datasets with binary 

classes but can be extended to handle multiple classes. The two most-common methods 

are one-versus-all and one-versus-one classification which combine multiple binary 

classifiers to perform predictions for multiple classes [39]. One-versus-all is a multiclass 

strategy in which a classifier is trained for each class to distinguish that class from all 

other classes. The final class predicted is then based on which classifier had the highest 

response for a given class. Alternatively, the one-versus-one technique trains classifiers 

to distinguish between pairs of classes. The final class predicted is the class with the 

highest vote total. To obtain probabilities of class labels using one-versus-one, a method 

called pair-wise coupling [40] is used to combine the probabilities from all the pairs of 

classifiers into a single probability for each class. 

2.2.1.2 Multi-instance Classifiers 

For standard machine learning settings, each instance is a fixed feature vector. For 

some classification problems, however, a fixed feature vector is not sufficient to 

adequately capture the distinct essence of an instance for which multiple “sub-instances”, 

or observations, are needed to describe a single instance. In these cases, multi-instance 

learning techniques are used that allow multiple instances to be grouped into bags that 

represent a single instance and are then given a single label [41]. The standard support 
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vector machine classifier can be modified to accept multi-instance datasets by changing 

the way in which the distance is computed in the kernel function by substituting the dot 

product with the sum of the kernel distances between each pair of instances within the 

bags [42]. The standard set of previously described kernels can still be used with no other 

changes needed to be made to the SVM. Standard classifier structures can still be applied 

to multi-instance datasets but require an appropriate method for combining the multiple 

feature vectors into a single feature vector. Often, this may involve averaging of feature 

vector values in the bag, but this may not be applicable to all multi-instance datasets.  

2.2.1.3 Evaluating Classifier Performance 

The standard approach used for estimating the performance of a classifier on 

unseen data is referred to as cross-validation, and involves splitting the data into k 

randomly stratified folds, training on a subset of k-1 folds, and then testing the recall 

capabilities on the one remaining set which was withheld from training. This is repeated 

for each of the folds, and the accuracy is calculated as the number of correctly classified 

instances divided by the total number of instances in the training set across all folds [39]. 

The value of k is typically set to 10, but if k is equal to the number of instances in the 

training set it is called “leave-one-out” analysis (LOOA). The reason for cross-validation 

is to avoid biasing of the performance metrics by allowing the data that is being predicted 

to be included in training set. This more closely simulates the real-world use-case in 

which the instance being predicted would not be included in the training set. 
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A confusion matrix can be generated from the predictions made during cross-

validation where each column is the predicted class and each row is the true class label of 

the instances. An example of this matrix is shown in Figure 2. This matrix is useful for 

determining the classes that are most often being involved in misclassification events. It 

also gives insight into underlying causes of inaccuracy and other statistics that measure 

performance. A variety of metrics are useful to evaluate and compare the performance of 

different classifiers to choose the ones that perform best on a given dataset. Choosing the 

performance metric that should be used to determine which classifier is yielding the best 

performance is specific to each problem and dataset.  Two common metrics are accuracy 

and receiver operator characteristic (ROC) [43]. 

The ROC curve is based on plotting the false positive rate versus the true positive 

rate over all possible decision thresholds [44]. For classification problems in which the 

classifier also produces probability values for class assignments, the decision threshold is 

the probability value (usually greatest) that implicates the final class assignment. For 

binary classification problems, the standard convention is that classes are named positive 

(+1) and negative (-1). The ROC curve is computed using the probabilities outputted 

from the classifier during cross-validation for each instance and the probability is 

typically defined as the probability that the instance belongs to the positive class (the 

probability of the instance belonging to the negative class is simply one minus that 

Acutal Class malignant benign
malignant 75 25
benign 15 85

Predicted Class

Figure 2. An example confusion matrix. The matrix shows the number of instances that 
were predicted as either the correct class of the incorrect class. The counts in 
the gray diagonal boxes indicate the number of instances that were correctly 
classified. In this example, there are 100 instances labeled “malignant” and 
100 labeled “benign.” 
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value). A threshold is set that assigns the positive class label to all instances with a 

probably greater than or equal the threshold. The ROC curve is then generated by: rank 

ordering the instances with their probabilities in decreasing order, varying the threshold 

value form 0 to 100%, and computing the false positive and true positive rate for every 

possible threshold value. The false positive and true positive rates found for every 

possible threshold value are then used to plot points on an x-y plane, which forms the 

ROC curve. The area under the ROC curve (AUC) can then be calculated and has a range 

of values between 0 and 1. Random guessing of the class labels has an AUC value of .5 

and an AUC value of 1 indicates that the classifier ranked, in terms of class probability, 

every instance of one class higher than the other. An intuitive explanation of the AUC 

value is that it is the probability that the classifier will rank a randomly chosen positive 

example higher than a randomly chosen negative example. 

To compare statistics of different classifiers to determine which has the best 

performance for a given dataset, cross-validation can be repeated several times with 

different randomly sampled subsets and then a t-test can be performed to determine if the 

difference is statistically significant. Ideally, a LOOA would be performed and the 

statistics compared for the different classifiers. For a large dataset and classifiers that 

have complex training procedures, this can be computational prohibitive. Cross-

validation can also be used to estimate parameters for a classifier such as the cost of miss-

classification for an SVM–usually denoted as C–or the number of trees used in random 

forest. 

2.2.2 Unsupervised Learning or Clustering 

Unlike supervised classification, clustering techniques are used when the labels of 

a given dataset are unknown. The goal is then to partition the instances into groups or 

clusters that are more similar to each other rather than to instances from other clusters 

[45]. The three main applications of clustering are: finding underlying structure, natural 



www.manaraa.com

 16 

classification, and compression [46]. Finding underlying structure includes gaining 

insights from the data, generating hypotheses about the data, and finding outliers or 

anomalies. Natural classification deals with grouping organisms into a system of ranked 

taxa. Compression via clustering refers to methods that summarize the data (compress) 

by representing the instances as some combination of the clusters. 

2.2.2.1 Clustering Techniques 

Clustering techniques can be divided into three categories based on the way in 

which they model that data, and their definition of what constitutes a valid cluster. 

Clustering algorithms can be placed into one of two categories, partitioned and 

hierarchical [46]. Partition-based approaches seek to divide the data into a preset number 

of clusters, whereas hieratical clustering algorithms create a tree-like structure wherein 

instances or subgroups are merged until all the instances are in a single cluster. 

The best-known partitioning clustering algorithm is the K-means algorithm [47], 

where K is defined as the desired number of clusters. The K-means algorithm begins by 

selecting K instances, then defines an initial centroid for each of K clusters to be the 

“location” of the instance itself. The K centroids are then repeatedly updated by 

alternating between assigning instances to the closest centroid, in terms of an appropriate 

distance metric, and then calculating the new centroid based on the arithmetic or 

geometric mean of the features of the all instances now assigned to the cluster. Typically, 

the Euclidian distance is used as the distance metric but other distance metrics have been 

used such as city block or Pearson correlation [48]. Variations on K-means exist, such as 

the aptly named K-median algorithm [49] that use the median instead of the mean in 

order to be more robust to outliers. Due to the gradient descent nature of K-means, the 

performance is dependent upon the initialization of the centroids [50]. Various methods 

for initialization have been developed, and a comprehensive analysis of the common 

initialization techniques can be found in [51]. 
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Alternatively, expectation-maximization (EM) [52] assumes that the instances 

were generated from N probably distributions, and attempts to estimate the parameters of 

the N probability distributions to the data. Cluster membership is determined according to 

the probability distribution most likely to generate each instance. A common distribution 

that is used in EM is a mixture of a Gaussian model, which assumes that the probability 

distributions are multivariate Gaussians distributions [53]. The model parameters for 

Gaussian distributions (mean and variance) are considered latent variables, and the goal 

of EM is to compute maximum likelihood estimation of the parameters based on the data. 

EM clustering alternates between two steps: (E) expectation and (M) maximization. In 

the E step, the current estimation of the model parameters are used to compute the 

posterior probability–often referred to as the responsibility–of the model parameters for 

every instance, and in the M step the responsibility is used to re-estimate the model 

parameters. These two steps are repeated until the model parameters converge. A primer 

which contains several practical examples of expectation maximization can be found in 

[54]. 

Non-parametric approaches to clustering make different assumptions about the 

definition of clusters. For instance, density based clustering techniques define clusters as 

contiguous regions of high density separated by regions of low density [55]. Since these 

methods do not make assumptions about the underlying distribution of the data, they are 

able to define clusters of arbitrary shapes. The classical density based algorithm is 

DBSCAN [56], which takes as input two parameters MinPts and Eps. These parameters 

define the minimum points (MinPts) needed in a defined radius (Eps) for a point to be 

considered apart of a cluster. The results of DBSCAN are highly depended on the choice 

of the two parameters [57,58].   

A recent non-parametric approach is called spectral clustering [59]. There are 

three main steps to spectral clustering: (1) computing an affinity matrix, (2) examining 

the eigenvectors of the affinity matrix, (3) clustering of the eigenvectors using K-means. 
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The main difference between spectral clustering algorithms is how the eigenvalues and 

vectors are used. The input parameters to spectral clustering are the number of clusters 

and sigma, which controls how the distances between the instances are computed. The 

standard equation for the distance is the Gaussian distribution, e
!!!!!
!!  , where si and sj are 

two instances. The affinity matrix contains the pairwise distances between each pair 

instances. The affinity matrix can also be viewed as a fully connected graph with the 

weights of each edge corresponding to entries in the affinity matrix. Then, the 

eigenvalues and eigenvectors of the affinity matrix are computed. In [60], the largest N 

eigenvectors are concatenated to form a matrix with the number of rows being equal to 

the number of instances by N, where N is the number of clusters. The rows are then used 

as features for K-means clustering, with K being equal to N. The i-th row of the 

combined eigenvector matrix corresponds to the i-th instance in the affinity matrix.  

Alternatively, spectral clustering can be viewed as performing graph-based 

operations on the affinity matrix. Depending on the manner in which the affinity matrix is 

normalized, the method has been proven as being equivalent to computing the 

approximate solution to the normalized mincut (ncut) problem of a graph, which is NP-

Hard [61]. The normalized mincut of graph G is defined as: 

ncut A,B = ! cut A,Bassoc A,V + cut A,B
assoc B,V  

cut X,Y = ! w(u, v)
!∈!,!∈!

 

!assoc X,V = w(u, t)
!∈!,!∈!

 

With V being the set of verities of graph G, w u,v  being the weight of the edge between 

vertex u and v, and A and B being two mutually exclusive sets of vertices whose union is 

the set of all vertices V. Similarly to density based clustering, the results of spectral 

clustering are largely dependent upon the choice of parameters, specifically sigma, and 

choosing the appropriate value is nontrivial [62]. Attempts have been made to 
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automatically choose the value of K, but appear to only work well if the clusters being 

found are reasonably separated [62].  

The other category of clustering algorithms is hierarchically clustering techniques. 

Most hierarchal clustering algorithms can be considered a variant of three standard 

algorithms: single linkage, complete-linkage, and minimum variance [46]. Single linkage 

[63] initializes every instance as a separate cluster and combines the clusters based on the 

minimum distance between the clusters. The algorithm terminates once all the instances 

have been merged into a single cluster. The mergers are usually presented visually as a 

dendrogram, which shows every merger of the algorithm starting at the beginning with 

each instance as a single clustering. Complete linkage follows the same steps except it 

computes the maximum distance between clusters.  

2.2.2.2 Evaluating Clustering Techniques 

The two standard approaches of evaluating clustering techniques are intrinsic and 

extrinsic measures [64]. Intrinsic measures compute values based on cluster compactness 

and distance from other clusters. Extrinsic measures require a gold standard clustering 

assignment to be known. A commonly used choice for extrinsic measures is the Adjusted 

Rand Index (ARI) [65,66]. Other extrinsic measure include the F-measure, precision, and 

recall.  

The ARI compares every pairwise combination of assignments for all instances 

and evaluates them against their corresponding cluster assignment in the gold standard. 

The ARI is based on the Rand Index (RI) [67], but considers the cluster assignments 

against assignments made by change. The ARI has a range from -1 to 1, whereas the RI 

has a value of 0 to 1. An ARI of 1 means that the two cluster assignments are in complete 

agreement. A rank of zero means that the assignments are equal to those made by 

randomly assigning instances to clusters, and less than 0 means that the cluster 

assignment are worse than those by chance but large negative values are less likely[68]. 
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The ARI is also valid for comparing cluster assignments of different number of clusters 

[66].  

The original Rand Index is computed as follows. Given a gold standard 

assignment of U and a resulting clustering assignment of V, four values are computed: 

(a) number of pairs that were assigned to the same cluster in both U and V 

(b) number of pairs that are in different clusters in U and in V 

(c) number of clusters that were the same in U but were different in V 

(d) number of clusters that were different in U but the same in V 

Once those four values are computed, the RI is simply equal to (a+b)/(a+b+c+d). The 

numerator is considered the agreement between the two. The RI is converted to the ARI 

value by: 

ARI= RI!ExpectedIndex
MaxIndex!ExpctedIndex 

Where the ExpectedIndex is equal to value value of RI expected by chance, and the 

MaxIndex is maximum RI index expect by random chance.  

2.2.3 Linking Phenotype and Genotype 

Previous work on linking phenotype to genotype has focused on predicting in 

both directions. For predicting phenotype from genotype, predictions of hair, skin, and 

eye color of criminals from DNA evidence alone has been shown to be possible [69].  

Using regression, it was shown that visual phenotypes of patients with compound 

heterozygous mutations in ABCA4 could be modeled additively in which each allele has 

a fixed contribution to the final phenotype. Using machine learning techniques, a model 

was developed to predict the drugs resistant of HIV-1 strains based on a set of 471 strains 

where the drug resistance was known [70]. 

Alternatively, predicting genotype from phenotype, a modified C4.5 decision tree 

was trained to predict the functional class of Open Reading Frames (ORF) in S. 

cerevisiae from phenotypic data [71]. In this case, the phenotype data was sensitivity or 
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resistance of a strain of S. cerevisiae to certain drugs with a known ORF deleted. 

Applying the trained C4.5 tree on unknown strains with deleted ORF, functional classes 

were predicted for the ORFs with unknown functional classes. A new type of analysis 

called Symptom- and sign-assisted genome analysis (SSAGA) [72] was developed for the 

prediction of a candidate disease gene set using clinical features (phenotypes) of 591 

recessive diseases found in pediatric patients. Each of the 591 diseases was mapped to a 

subset of 227 clinical terms from nine symptom categories, and each gene was 

represented by, on average, 8 of these terms. Labels were assigned to a patient based the 

symptoms and signs of their clinical presentation, and genes that matched the terms were 

included in a candidate disease gene set. When retroactively testing on 533 children, a 

sensitivity of 99.3% was obtained based on the criteria that the correct gene was listed in 

the candidate disease gene set. On average 194 genes were nominated by the SSAGA 

analysis. The candidate disease gene set was then used to filter out variants identified in 

exome sequencing that were not within the list of genes in the candidate set.  Another 

approach of predicting genotype from phenotype was demonstrated in the prediction of 

the genotype of patients with an inherited heart condition known as long QT syndrome 

using the measurements from a treadmill exercise routine [73]. 
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CHAPTER 3 

 PREDICTING HEARING LOSS GENOTYPES FROM PHENOTYPES 

3.1 Introduction 

Hearing loss is the most common sensory deficit in Western societies [14].  In the 

United States, congenital hearing loss occurs three times more frequently than Down 

Syndrome, six times more frequently than spina bifida, and at least 50 times more 

frequently than phenylketonuria [74-76]. It is currently estimated that 1 child in 1,000 

born suffer from some form of hearing loss and it is estimated that about half of those 

children have an inherited genetic cause [77]. This chapter is based on work published in 

“AudioGene: Predicting Hearing Loss Genotypes from Phenotypes to Guide Genetic 

Screening” [3]. 

Previous studies identified phenotypic differences in hearing loss that were 

dependent upon the genotype for non-syndromic hearing loss [2,78]. Using this 

observation, the goal was to create a tool that could predict the causative genotype (locus) 

from the phenotype (hearing loss pattern) for patients with non-syndrome hearing loss. 

Originally, the prioritization was designed to reduce cost and time of Sanger Sequencing 

by prioritizing the genes and loci that would be sequenced. In the era of next-generation 

sequencing, where all known protein encoding genes can be screened in parallel for 

considerably low cost, the method is still relevant as a method for prioritizing variants of 

unknown significance that are found during next generation sequencing. In this chapter, 

the method developed for predicting the genetic cause of patients with two forms of 

genetic hearing loss is described and an estimation of the performance of the method is 

also made. The system is named AudioGene and encompasses both the method and the 

publicly available web interface that allows the analysis to be performed on our servers. 
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3.2 Background 

3.2.1 Hearing Loss Background 

Hearing loss is defined as reduced hearing acuity during auditory testing.  Hearing 

is measured in decibels hearing level (dB HL) with a frequency-specific normative 

threshold of 0 dB defining the level at which normal controls perceive a tone burst of a 

given intensity 50% of the time.  A measurement of these thresholds across several 

frequencies is known as an audiogram. A person’s hearing acuity is classified as normal 

when it falls within 20 dB of these defined thresholds, with hearing loss otherwise graded 

as mild (20-40 dB), moderate (41-55 dB), moderately severe (56-70 dB), severe (71-90 

dB) or profound (>90 dB). Hearing loss can be further characterized as low frequency 

(<500Hz), mid-frequency (501-2000Hz) or high frequency (>2000Hz) [14].   

3.2.2 Autosomal Dominant Non-syndromic Hearing Loss 

Approximately 20% of the inherited hearing loss cases are caused by Autosomal 

Dominant Non-syndromic Hearing Loss (ADNSHL) [79]. ADNSHL is defined as 

hearing loss that is inherited and not associated with any other symptoms that are caused 

by a common genetic disorder such as Usher syndrome, which causes both hearing loss 

and progressive vision loss. There are currently 64 ADNSHL-mapped loci, with genes 

identified for only 34.  Interestingly, mutations in a few genes such as WFS1, COCH, and 

TECTA cause an easily recognizable hearing loss pattern. This observation suggested 

that an automated tool could be developed for predicting hearing loss genotypes [2]. 

3.2.3 Autosomal Recessive Non-syndromic Hearing Loss 

In 75-80% of inherited cases, both parents have normal hearing and the genetic 

cause is classified as Autosomal Recessive Non-syndromic Hearing Loss (ARNSHL). 

Currently, 95 ARNSHL loci have been found and approximately 50% of the genes for the 

loci have been found [80]. The most common cause of ARNSHL is the 35delG 
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homozygous mutation in the GJB2 gene and it is believed to be responsible for 

approximately 70% of all ARNSHL cases in the Caucasian population [15]. It has also 

been shown the phenotype of ARNSHL varies based on the mutation and the mutation 

type [2]. 

 

3.2.4 Audiograms and Audioprofiles 

An audiogram is a plot of a patients hearing loss with the x-axis being the discrete 

frequencies (250 Hz to 8 kHz) measured and hearing loss in dB loss along on the y-axis. 

The values on the y-axis are reversed, with normal hearing starting at the top at 0 dB loss 

and profound hearing loss at 130 dB. An example audiogram is shown in Figure 3. 

Different loci are known to have different patterns and progression of hearing loss with 

Figure 3. An example audiogram with the discrete frequencies measured along the x-axis 
and the amount of hearing loss in dBs along the y-axis. The blue audiogram 
(top) represents the expected audiogram for a normal patient with 0 dB of 
hearing loss across all frequencies. The green audiogram (bottom) is of a 
patient with slight hearing loss in the lower frequencies but has moderate 
hearing loss at higher frequencies and would be considered a down-slopping 
audiogram. 
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age. The progression does not have to be uniform for all frequencies and can be 

dependent upon the frequency. A visual representation of the progression with age, is 

called an audioprofile. An audioprofile consists of four audiograms that are the average 

of patients binned into twenty-year increments, i.e., 0-20, 20-40, and so forth. The 

audioprofile for the DFNA2A and DFNA9 locus can be seen in Figure 4. Both loci 

progress with age, but the initial hearing loss at birth is considerably different, and this 

difference forms the basis of the ability for AudioGene to predict the genotype. The same 

audioprofile with error bars can be seen in Appendix A, but is not very useful due to the 

large error bars. 

Figure 4. Sample audioprofiles from the averages of patients from DFNA2A and DFNA9 
grouped into age groups spanning two decades. Average standard deviation 
across all ages and frequencies is 18.92 dB and 19.47 dB for DFNA2A and 
DFNA9, respectively. This same plot with error bars is shown in Supp. Figure 
1. The number of audiograms for each age group is listed in parentheses in 
the legend, with the number of audiograms for DFNA2A listed first and then 
DFNA9. Both loci exhibit distinctly different shapes of hearing loss along 
with different rates of progression over time. 
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3.3 Methods 

The method that was developed for predicting genotype from phenotype consisted 

of several steps: preprocessing, training the classifier, and finally making predictions for 

unseen patients. The full pipeline can be seen in Figure 5. In order to demonstrate the 

effectiveness of the method, standard metrics were used to evaluate the accuracy and 

performance of this approach. 

 

 

Figure 5. The final analysis pipeline of AudioGene used to make predictions for 
unknown patients. (1) The training set is preprocessed by filling in missing 
values and adding coefficients of fitted second and third order curves. (2) A 
Multi-Instance SVM is trained on the preprocessed training set from step 1. 
(3) Unknown patients’ audiograms are preprocessed in the same manner as 
described in Step 1. (4) Probabilities for each locus are generated by the 
trained SVM model. (5) Loci are finally ranked by their probabilities, with 
results being displayed on the website and emailed to the user. 
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3.3.1 Audiometric Data 

The dataset used to train AudioGene consists of audiograms collected from 

publications, original audiograms provided by authors of the publications, and by various 

otolaryngology and audiology clinics. Our dataset was comprised of 3,312 audiograms 

from 1,445 patients. The typical audiogram included data for six frequencies: 250Hz, 

500Hz, 1kHz, 2kHz, 4kHz, and 8kHz. Measurements for frequencies at 1.5kHz, 3kHz 

and 6kHz were also present for a portion of the patients, but were less common than 

measurements for the six other frequencies.  Audiograms with fewer than four 

frequencies measured were excluded from the dataset, and reduced the number of 

audiograms to 3,024 audiograms in the training. The total number of patients and 

audiograms for each locus is listed in Appendix B. 

3.3.2 Preprocessing   

Audiograms in the dataset were preprocessed prior to their use in prioritization or 

training. If available, audiograms from both ears that were taken at the same time were 

combined by retaining the minimum value (i.e. better acuity) at each frequency. This 

results in a composite audiogram that has the least amount of hearing loss at each 

frequency. Coefficients of second and third order polynomials were then fit to each 

audiogram and added as secondary features after the coefficients interpolation. Linear 

interpolation and extrapolation were used next to replace missing threshold values. 

Multiple audiograms for patients were grouped into a ‘bag’ for use with multi-instance 

classifiers, with a one-to-many relationship between patients and audiograms [81]. For 

classifiers that did not support multi-instance datasets, each bag was reduced to a single 

representative audiogram using the average of the audiograms in the bag. 

3.3.3 Prioritization 

Since the goal is to rank a set of loci for a patient for screening or to be used for 

determine phenotypic concordance of variants found via HTS, loci are ranked according 
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to the probabilities generated by a modified Support Vector Machine (SVM) using a 

linear kernel capable of utilizing multi-instance datasets. An implementation of the multi-

instance SVM (MI-SVM) was used from the Weka machine learning toolkit [82,83]. 

SVM training was performed using the Sequential Minimization Optimization algorithm 

(SMO), in which a one-versus-one strategy is used to handle multiple classes in 

conjunction with pair-wise coupling to generate the probabilities for each locus [84]. 

Since probabilities of SVMs are not well calibrated, they are only useful in ranking. The 

multi-instance SVM processes the bagged audiograms at the kernel level, where the 

kernel distance between two patients is the sum of all pairwise kernel distances between 

all pairs of audiograms in each patient’s bag. The loci/genes are then ranked in 

decreasing order of probability to produce a prioritized list of loci to inform genetic 

testing efforts. While these probabilities are useful for ranking they are not regularized, 

and are therefore only useful as relative probabilities. 

3.3.4 Classifier Choice   

Five classifiers were evaluated using two strategies: 1) Accuracy, area under ROC 

curves (AUC), precision and recall were computed for each classifier using ten 10-fold 

cross-validation experiments. AUC, precision and recall were then computed for each 

class using a weighted average based on the size of each locus. 2) leave-one-out analysis 

(LOOA) was performed of the aforementioned prioritization method using each 

classifier.  Audiogram bags corresponding to each patient were removed from the 

training set one at a time, and the prioritization method was performed with the classifier 

trained on the dataset with the patient removed.  For this analysis, patients were 

considered correctly classified if their locus was ranked amongst the top N loci, using the 

ranking method described in the previous section. SVM, Multi-instance SVM (MI-SVM), 

a Majority classifier, Random Forest [38], and Bagging [36] were each tested as 

classifiers. Both SVM implementations used a linear kernel and all of the classifiers were 
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derived from implementations in Weka [83]. The Majority classifier was considered the 

baseline against which the performance of all others was measured. 

3.3.5 Validating Preprocessing   

A leave-one out analysis of various combinations of preprocessing steps was 

performed on the training set. These permutations included combining only audiograms 

taken from different ears at the same age, combining and filling in missing (frequency) 

values, and adding the coefficients of fitted second- and third-order polynomials. 

3.3.6 Noise Model and Robustness to Noise 

A noise model was developed that represented real-world noise associated with 

the measurement and recording of audiometric data.  This model was then used to 

perform a simulation to determine the robustness of our method in the presence of noise.  

The noise model takes into consideration a mis-calibrated audiometer and test-retest 

variability [9].  According to our model, a mis-calibrated audiometer could result in an 

additive (+/-) shift across an entire audiogram, and the test-retest variability of between 5 

and 10 dB differences between measurements taken at two different times for the same 

patient. The noise model adds noise in the frequency domain.  In other words, the added 

noise is based on treating the frequency values as values in the domain (x-axis) and the 

dB loss/gain as values along the range (y-axis). The Discrete Cosine Transform 

(DCT)[85] was used to transform the audiogram curves into the frequency domain.  The 

DCT was chosen over the Fourier transform for simplicity, because all DCT components 

are all real-valued.  The DCT transform function F is shown in Equation 3.1. 
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 Once in the frequency domain, noise is added in two parts.  First, a 

random magnitude of noise is added to F0 (the DC component) in order to shift the entire 

audiogram.  This mimics the case where the calibration of the audiometer results in 

uniform inaccuracy for the entire measurement of the audiogram. Next, Gaussian noise is 

added to the other coefficients with a magnitude scaled by an exponential decay function.  

This simulates the test-retest variability discussed above.  The exponential decay function 

effectively concentrates the noise in lower frequency components of the DCT and results 

in noisy audiograms that still retain their overall characteristic shape.  With the addition 

of this noise, an inverse DCT was performed to recreate a time-domain audiogram. A few 

examples of the noise added to an audiogram are shown in Figure 6, with ShiftScale at 10 

and Scale at 5. ShiftScale is defined as a scalar value that controls the magnitude with 

which the audiogram can be shifted, and Scale as a variable used to control the degree 

with which overall curve shape is changed. Lower values of both of these variables mean 

lower noise, and vice versa. The equations used to add noise to the DCT coefficients with 

parameters Scale and Shift scale are shown in Equation 3.2 and 3.3.   

F'!=F!+RandNorm 0,ShiftScale !!!!!!!!!!!!!!!!!!!!!!!!!!!! 3.2  

F'! = F! + RandNorm 0, Scale e!
!!!
! !, k! > 0!!!!!!!!(3.3)"

Where RandNorm is a function that generates random numbers from a Gaussian 

distribution,n with the first parameter being the mean and the second parameter being the 

standard deviation. To determine the robustness of our prioritization method to noise, 5% 

of the patients were selected at random and removed from the training set.  Noise was 

added to the removed audiograms using our noise model, with the value of ShiftScale 

always twice as large as the value of Scale.  For a given level of noise x, ShiftScale and 
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Scale are typically 5x and 2.5x, respectively. The prioritization method was then trained 

on the remaining 95% of patients, and the 5% withheld subset was classified. This 

process was repeated 200 times with a different random sampling of patients on each 

repetition.  The final accuracy for a given ranking requirement (N) is the sum of all the 

patients that were correct across all iterations divided by the total number of patients that 

were withheld over all 200 iterations. The value of N specifies that the locus/gene must 

be ranked amongst the top N loci/genes given by the prioritization method described in 

the Prioritization section. 

3.3.7 Identifying Outliers  

A variant of the leave-one out analysis was used to identify patients who are 

outliers to the classifier and are often misclassified.  Each patient was removed and the 

classifier was retrained on the remaining patients.  The noise model described in the 

Figure 6. An audiogram with three examples of added noise, with a ShiftScale of 10 and 
Scale of 5. The overall characteristic shape of the audiogram still remains 
after noise is applied. 
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previous section was used to add noise to the removed patient’s audiograms, with a noise 

Scale of 5.  The patient was then classified with the retrained classifier, and the predicted 

locus was recorded.  The classification was repeated 100 times with the noise model 

applied each time to the patient’s original audiograms.  If the correct locus was never 

predicted for any of the 100 iterations, the patient was considered an outlier. 

3.3.8 Web Interface  

AudioGene is accessible via a web interface (http://audiogene.eng.uiowa.edu) and 

all analyses are performed on secure servers managed by the Center for Bioinformatics 

and Computational Biology (CBCB) at the University of Iowa. An example of the upload 

page and the results page are shown in Figure 7. Audiometric data may be uploaded via a 

web-based spreadsheet form or by using a downloadable Excel™ spreadsheet provided 

on the website.  After uploading data, audiograms are displayed as images to validate 

data entry.  Once verified, the analysis can be completed using all available loci or a user-

selected subset of these loci, an option that can be chosen when specific loci have already 

been excluded.  Uploaded and verified data are submitted to a local computational cluster 

in the CBCB for analysis.  When predictions are complete, results are made available to 

users online and by e-mail. Successful application of this website to genetic hearing loss 

has been demonstrated by the authors and others [86]. 
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Uploading Web Interface

Results Interface

Figure 7. Screen captures of the web interface for AudioGene and is made available 
publically at http://audiogene.eng.uiowa.edu/. The upload interface has two 
methods for uploading data, the first is by uploading an excel sheet that is 
based on a template and the other is through the use of an online spreadsheet. 
The results are emailed to the user and also as a separate page. The top three 
predictions are displayed by default with an option to show additional 
predictions. The user can also compare the patients’ audiograms with the 
audioprofiles of different loci by clicking on the audiograms button below the 
results. 
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3.4 Results 

3.4.1 ADNSHL Classifier Choice and Performance  

Bagging, Random Forest (RF), and Multi-Instance SVM (MI-SVM) had very 

comparable performance, shown in Table 1, and ROC curves for each class for these 

classifiers are shown in Appendix C. The bold value in Table 1 indicated the highest 

value, and multiple bold values indicate that they were statistically the same. AUC, 

precision, and recall were all computed as weighted averages based on the size of each 

locus. Asterisks indicate that values were not statistically significantly different from 

each other, and bold indicated the largest value. Based on these metrics any of the 

classifiers, except the SVM and Majority classifier, would obtain comparable 

performance. However, their performance differs when the number of guesses allowed is 

increased. The number of guesses allowed can be varied, and is termed as predicting the 

top N loci, and the accuracy can be determined when the top N loci are predicted. At 

higher values of N, when plotting accuracy versus the number of guesses, MI-SVM and 

Single-Instance SVM (SI-SVM) outperform all other classifiers, shown in Figure 8. The 

MI-SVM and SI-SVM have approximately equal accuracies at higher values of N but for 

lower values, the MI-SVM performs better.  Both the Random Forest classifier (RF) and 

Bagging classifier perform as well as the MI and SI-SVMs at lower values of N, but at 

higher values of N, their accuracy reaches a maximum of approximately 91%, whereas 

Table 1. Accuracy, AUC, precision and recall for all classifiers tested.  
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the MI- and SI-SVMs approach 100%.  This difference is due to limitations in the 

training methods, since loci for which there are only a few audiograms are never 

predicted.  Based on this analysis, the MI-SVM was chosen as the classifier for 

AudioGene.  It has an estimated accuracy of 68% of including the correct locus/gene in 

the top 3 predictions.  In contrast, the Majority classifier has an accuracy of only 44%. 

This measurement of performance is a good metric because it is similar to the intended 

use of AudioGene, where clinicians would sequence the predicted genes in an iterative 

fashion, often-times quite rapidly (days). This approach allows us to determine our 

accuracy in the event that multiple predictions are required before identifying the correct 

locus. 

 

 

Figure 8.  A comparative plot of the accuracy of the evaluated classifiers. This plots 
accuracy against N, where N represents whether or not the correct locus was 
ranked among the top N loci.  Both SVMs outperform all other classifiers and 
the Multi-Instance SVM (MI-SVM) demonstrates the best accuracy of all. 
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3.4.2 Preprocessing Validation 

When N (number of ranked predictions examined) is allowed to increase, the use 

of raw data (without any preprocessing) outperformed analyses which employed data 

which was preprocessed in any way It was hypothesized that this was due to a bias in 

which frequencies were measured and that measurements were not missing randomly, but 

rather were dependent upon their constitutive loci. This hypothesis was evaluated by 

converting audiograms into binary vectors in which the frequency values were coded as 1 

if a threshold measurement was available or 0 if there was no measurement. A10-fold 

cross-validation was then run with an SVM and its accuracy was compared against a 

Majority classifier. Accuracies should have been similar if no information was contained 

in the missing frequency values, but the MI-SVM produced an accuracy of 33% while the 

Majority classifier had an accuracy of 20%. Therefore, it was concluded that filling in the 

missing values was necessary to eliminate this bias. 

Based on the bias found by not filling in missing values, a further analysis in 

which polynomial coefficients were included, was not made. As Figure 9 shows, adding 

the coefficients has only a marginal effect on the accuracy. To prove statistical 

significance, 10-fold cross-validation experiments were performed as a follow-up to 

compare the addition of the coefficients. The accuracy of identifying the correct 

gene/locus within the first three predictions was 66.05% with the coefficient added, 

versus 65.22% without. This small gain improves performance and is computationally 

inexpensive to compute even though it was not statistically significantly different. 

Therefore the preprocessing step consists of adding the coefficients of fitted second and 

third order polynomials and filling in missing values. 
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3.4.3 DFNB1 Results 

In addition to predictions for ADNHL loci, the ability to make predictions for 

ARNSHL loci was also investigated. Currently, the only dataset available contained 

patients from only the DFNAB1 locus and in particular mutations in the GJB2 gene. It 

had previously been reported that mutations in DFNB1 account for between 20%-50% of 

all ARNSHL cases, and this percentage varies based on the population studied [16]. That 

dataset consisted of 1,119 patients with 39 different mutations, with over 79% of the 

cases having the same 35delG homozygous mutation. In contrast, the next largest 

mutation only represented 3.6% of the dataset. Previous research observed differences in 

Figure 9. The accuracies of different combinations of preprocessing steps. While 
preprocessing with only combining audiograms taken at the same age but 
from different ears has greater accuracy as the number of guesses increase, it 
has been shown that this is due to a collection bias. Interpolating missing 
values is therefore necessary in order to remove this bias. Even though adding 
the coefficients of fitted second and third order polynomials produces 
marginal increase in performance, it has been shown in a follow-up 
experiment to be statistically significant. 
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phenotype for different mutations in GJB2 [2]. Attempting to make predictions for the 

exact mutation given the large class imbalance and relatively few number of patients for 

the majority of mutations in the dataset. However, using the current ARNSHL dataset the 

strongest phenotypic difference that could likely be predicted was between homozygous 

truncating mutations and other combinations of truncating and missense mutations [87]. 

The other combination of mutation types contained both homozygous missense mutations 

and heterozygous truncation and missense mutations. 

The same method used for predicting the ADNSHL loci was also used for 

classification of the DFNB1 mutations with the exception of the target variable being 

mutation instead of locus. When attempting to predict the exact mutation using all 1,119 

patients and 39 mutations the accuracy was equal to that of a majority classifier and every 

prediction was 35delG/35delG. Since there was a previously reported phenotypic 

difference between mutation types, the patients were grouped into two classes–

homozygous truncating (T/T) mutations and other mutation types (Other)–consisting of 

non-truncating/truncating and non-truncating/non-truncating mutations. The accuracy and 

AUC values of the ROC curves are shown in Table 2. The T/T class was the largest class, 

91.41% of the dataset, and an accuracy of 94.96% was obtained using the MI-SVM 

compared to 91.41% for a majority classifier. A statistically significant difference in 

AUC value was also observed with MI-SVM having a value of 0.83 compared to 0.47 for 

a majority classifier. The values are the averages from 100 runs of 10-fold cross-

validation, and were all statistically significantly different with a p-value < 0.05. The 

withheld accuracy is the accuracy of the T/T patients being predicted by a classifier tried 

Table 2. The accuracy and ROC values for both the original DFNB1 dataset and the 
results of downsampling the T/T class to be the same size as the “Other” class.  

Accuracy ROC Accuracy ROC Withheld Accuracy
Majority 91.4% (0) 0.47 (0) 50% (0) 0.5 (0) -
MI-SVM 95% (0.1) 0.76 (0.01) 83.3% (1.71) 0.83 (0.02) 87.7% (.01)

Original Dataset Downsampled Dataset
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on the downsampled dataset.   

Examining the confusion matrix, shown in Table 3, from one of the cross-

validation runs for the MI-SVM classifier, only about 56% of the patients in the “Other” 

class were correctly classified whereas 99% of the T/T patients were correctly classified. 

While the accuracy and AUC values improve over a majority classifier, the “Other” class 

is more important to predict correctly because the 35delG homozygous mutation would 

always be screened first for any patient with a presumed recessive inheritance because of 

its prevalence. However, in the case where a 35delG mutation is not found after screening 

a patient, then the predicted mutation type becomes more relevant.  

In order to improve the prediction of the “Other” class of mutations and reduce 

the false positive rate, the T/T class was randomly down-sampled to contain the same 

number of patients for the “Other” class, equaling 96 in each class. Then cross-validation 

was performed on the down-sampled dataset and all patients that were removed during 

down-sampling for the T/T class were classified using a MI-SVM trained on the entire 

down-sampled dataset. This was done to determine how well the down-sampled dataset 

would generalize on the withheld T/T patients. The steps of down-sampling, cross-

validation, and prediction of the withheld patients was repeated 100 times with different 

random down-sampled datasets to determine how consistent the performance was with 

different subsets of the T/T patients. The average accuracy, AUC, and accuracy of the 

withheld set can also be seen in Table 1, along with the standard deviation in parentheses. 

Correct Class
T/T Other T/T Other

T/T 1010 12 85 11
Other 42 54 22 74

Predicted Class Predicted Class
Original Dataset Downsampled Dataset

Table 3. The confusion matrix of both the original DFNB1 dataset and the downsampled 
dataset.  
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While the accuracy does decrease from 94.96% to 82.99%, the AUC increase 

significantly from 0.76 to 0.83, which can be interpreted as indicating that the ability for 

the classifier to discriminate the two classes was improved. Viewing the confusion 

matrices for the original dataset and the down-sampled dataset, shown in Table 3, the 

number of patients being correctly predicted for the “Other” mutation type increased 

from 54 to 74. The accuracy of predicting the withheld patients was 87.7%, and had very 

little variation with a standard deviation of 0.01. The low standard deviation indicates 

that the phenotype for the T/T mutations was consistent within the dataset and do not 

vary much when using different down-sampled datasets. This implies that only a small 

number of patients are needed to represent the entire class, and that reasonable 

performance can be expected using the down-sampled dataset on T/T mutations. The 

higher accuracy for predicting the withheld patients was likely due to the fact that it 

contained only patients that were T/T–consisting of only patient with profound deafness. 

In contrast, the accuracy reported for the downsampled dataset contained both type of 

patients.  

3.4.4 Robustness to Noise 

AudioGene suffers minor performance degradation from its baseline performance 

when datasets contain modest amounts of noise (~3% at noise levels between 1 and 3, as 

defined previously), as shown in Figure 10.  It is only with higher levels of noise that 

there is a significant loss of performance (~10%).  This amount of noise would equate to 

a shift of the audiogram between 20 and 25 dB and substantial distortion to the original 

audiogram’s shape. 

3.4.5 Outlier Identification 

A patient’s audiogram was considered an outlier if the correct gene/locus was 

never predicted during any of 100 repetitions with the addition of high amounts of noise. 

The plot of outliers by loci is shown in Appendix D.  From the results it can be inferred 
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that, to the classifier, patients who are outliers never appear similar to other patients from 

that locus. 

As a general rule, smaller loci (in terms of the number of patients per locus) 

should contain a larger percentage of outlier patients and conversely, larger loci should 

contain fewer outliers.  However, there exist some loci that have a larger number of 

outliers than expected. DFNA10 is an example in which 34 of 56 patients are labeled as 

outliers. Further investigation of these outliers is necessary to determine if they are truly 

outliers or are representative of the inherent variability of the audiograms for a particular 

locus. This variability could also be associated with unknown subclasses. 

Figure 10. The accuracies of different combinations of preprocessing steps. While 
preprocessing with only combining audiograms taken at the same age but 
from different ears has greater accuracy as the number of guesses increase, it 
has been shown that this is due to a collection bias. Interpolating missing 
values is therefore necessary in order to remove this bias. Even though adding 
the coefficients of fitted second and third order polynomials produces 
marginal increase in performance, it has been shown in a follow-up 
experiment to be statistically significant.  
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3.5 Discussion 

The results demonstrate that the genotypes can be predicted from the phenotype 

for patients with ADNSHL and mutations in DFNB1. The robust performance was 

achieved using a MI-SVM and had an accuracy of ~68% as compared to a Majority 

classifier, which has an accuracy of ~44% for predicting the top three loci. It was also 

shown that missing threshold values must be interpolated to guarantee an unbiased 

classifier that generalizes effectively to unknown data.  

Applying the same method that was developed for ADNSHL to the DFNB1 

dataset, it was initially unsuccessful in predicting the mutation but was able to predict the 

mutation type instead. To remove the effects of the large class imbalance, the T/T class 

was down-sampled to be of equal size the “Other” class. The AUC value increased from 

0.75 to 0.83 after down-sampling, but the accuracy decreased from 95% to 83.3%. 

However, the number of patients correctly classified for the “Other” mutation class 

improved from 54 to 74. An accuracy of 88% was achieved for the withheld T/T patients 

using a classifier trained on the down-sampled dataset. 

In some settings, missing data can serve as informative features. For example, a 

missing value from a “date of death” field implies that the patient is not deceased. In the 

case of an audiogram, missing frequency thresholds imply nothing about the genotype of 

the patient, but rather are normal variations in clinical practice between sites. Therefore, 

missing thresholds must be interpolated to guarantee an unbiased classifier; otherwise the 

classifier cannot generalize effectively to data collected at different clinics.  

The results of applying the noise model to the method showed that the 

performance of the MI-SVM was robust to modest levels of noise that would be expected 

with measurement noise.  Although it was attempted to employ a simple linear model to 

apply random amounts of noise independently at each frequency, this approach generated 

physically impossible audiograms and was abandoned. An example is a saw tooth-

patterned audiogram produced by alternating +/-10 dB at each frequency. By applying 
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noise in the frequency domain with the DCT, the overall audioprofile shape was retained 

but produced audiograms that were shifted and/or stretched that are still physically 

possible.  This noise model allowed for the determination of the robustness of the method 

to various amounts of noise and also enabled the identification of outliers. 

The identification of outliers is particularly interesting, since genetic modifiers of 

hearing loss are known to exist. The method for identifying outliers is equivalent to 

selecting the patients who are not predicted correctly, even when allowing for large 

degrees of error in the data collection. This could be caused by inadequate training data 

for a given locus, inadequate separation between two phenotypically similar loci, an 

improperly assigned causative locus, or environmental and genetic modifiers that affect 

the patient’s phenotype.  

3.6 Conclusion 

In summary, a method was developed for prioritizing genetic loci for ADNSHL 

screening based on a patient’s phenotype. Using a leave-one-out analysis, AudioGene has 

an estimated accuracy of 68% for identifying the correct genetic cause of hearing loss 

within the top three predictions using a MI-SVM. Apply the same procedure to patients 

with mutations in the recessive DFNB1 locus, an accuracy of 83.3% was obtained by 

down sampling the larger class and predicting the mutation type as T/T or “Other”.  The 

method was shown to be robust to noise with a drop in accuracy only when large amounts 

of noise were applied. AudioGene is available as a web service at 

http://audiogene.eng.uiowa.edu.  Originally developed for prioritizing loci for Sanger 

sequencing [88], as sequencing technologies have advanced, AudioGene has proven 

invaluable as a method of evaluating variants of unknown significance generated by 

targeted genomic capture and massively parallel sequencing, effectively linking a 

person’s phenome to their genome [27,89].  
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CHAPTER 4 

SUBCLASS DISCOVERY USING HIERARCHICAL SURFACE 

CLUSTERING 

4.1 Introduction 

The goal of supervised machine learning is to utilize labeled data to train a 

classifier that can be used to predict the class membership of unlabeled data. In most 

cases, the set of class labels is well defined. For instance, in the case of a bank predicting 

if a customer will default on a loan, there are two possible classes: default or not default. 

When attempting to predict genotype from phenotype, the genotypes used as class labels 

may not adequately reflect the manner in which the disease phenotype manifests. For 

example, using a large genomic locus containing one or more putative mutations as the 

genotype could be too coarse of a class label. A better genotype could be the mutation 

type, such as truncating versus non-truncating (perhaps in addition to genomic locus), if 

the phenotype was found to better correlate with the mutation type. Another issue is that 

the genotype itself can represent complex genetic factors and not just mutation, mutation 

type, or locus. The goal of the methods developed in this thesis is to identify possible 

subgenotypes or subclasses based on examination of the phenotype data for potentially-

novel subclasses. Finding these subclasses can be difficult because the significance of the 

identified subclasses may be hard to determine. For instance, if clustering is used to 

identify potential subclasses, by the very nature of clustering, the class will be partitioned 

into groups. These groups however may represent subclasses or could be the result of the 

clustering algorithm being forced to partition the class and the significance of the 

partition must then be determined. The primary motivating application of the methods in 

this thesis is for finding subclasses in audiometric datasets. The main contribution 

therefore, is a novel hierarchical surface clustering technique accompanied by a novel 

visualization technique applied to simulated and measured audiometric data.  
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4.2 Background 

4.2.1 Subclass Discovery Techniques 

The main focus of previous subclass discovery work has been to improve 

classification accuracy [90-93]. Many of these techniques allow linear classifiers to 

approximate non-linear decision boundaries by performing clustering within existing 

classes to identify subclasses [34,93]. The labels for the subclasses are then mapped back 

to the original class labels following prediction [90-92]. In the case of Clustering in 

Classes (CIC) [90], subclasses were identified by performing K-means clustering on the 

instances of a given class, and then using the cluster assignments as new class labels. Any 

predictions made for the new (sub)class labels were then mapped back to the original 

Figure 11. Example of the difficulty of using accuracy when finding subclasses within 
existing classes. Initially two classes are given the blue class (upper right 
union of “+” and “o” distributions) and the red class (lower left distribution). 
If the blue class was split with K-means, and then the accuracy were 
evaluated, there would be no increase in accuracy. Therefore, accuracy will 
not improve if the original class that is being split occupies a region of the 
feature space that is already separable from other classes. 
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class labels. Employing this approach, an increase in accuracy was observed for some 

datasets during cross-validation when using a Support Vector Machine [34] with a linear 

kernel. However, an increase in accuracy was not observed when using an SVM with a 

Radial Basis Function (RBF) kernel. An alternative approach, called multimodal softmax 

(MMS)[93], defines latent (soft) subclasses that may be inferred during training in an 

effort to increase accuracy. 

All of these methods focus on increasing classification accuracy and therefore 

cannot find a hidden or missing subclass within a class if it does not increase 

classification accuracy. A trivial example of a class containing two subclasses, which 

after splitting does not increase accuracy, is shown in Figure 11. There are originally two 

classes given, red and blue. As depicted in Figure 11, the blue class consists of two 

subclasses–the plusses (+) and circles(o). The application of any of the previously 

described methods would not result in an increase in cross-validation accuracy, however 

it may correctly recover the two subclasses. Therefore, if a class and its subclasses 

occupy a region of the feature space that does not overlap other classes’ regions, then 

these methods will fail to identify potential subclasses. 

Other research has focused upon discovering disease sub-types from gene 

expression data [94-96]. These techniques are domain specific and deal with the added 

challenges of analyzing microarray data. The methods differ on how they find the most 

informative subset of genes and then how those are used to identify the disease sub-types. 

In one of the early cases, the class discovery approach the difference between two sub-

types of leukemia (acute myeloid leukemia and acute lymphoblastic leukemia) [95].  

4.2.2 Subclass Discovery Challenges in the AudioGene 

Dataset 

For the case of AudioGene, attempting to identify subclasses solely by clustering 

can be difficult because many of the known loci reflect progressive hearing loss based on 
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age. Clustering of audiograms from a specific locus will likely result in sub-clusters 

based on progression but may not represent meaningful subtypes of the disease. This 

means that during clustering, the progression of hearing loss needs to be carefully 

considered in order to increase the likelihood of finding meaningful subclasses. Also, 

based on the CIC results [53,90] the increase in accuracy from splitting a class should not 

be used as the criterion for determining whether subclasses exist because it will likely 

increase because of the reasons CIC observed an increase in accuracy and not because a 

subclass was found. 

Another problem is that the variability between individuals within a given locus 

can be quite large. In Figure 12, all the audiograms from the DFNA2A locus are shown. 

As can be seen, there is a large degree of variability among members of this locus. This 

can cause problems for certain clustering techniques, especially ones that cluster based on 

density. These techniques assume that clusters are regions of high density separated by 

regions of relatively low density. As can be seen from the audiograms from patients with 

a DFNA2A genotype (Figure 12), the degree of variability would likely cause problems 

in identifying regions of lower density and would be highly sensitive to parameter choice. 

More sophisticated clustering techniques could be used, such as spectral clustering 

[9,60,61,97], but these also have parameters that need to be chosen, and can drastically 

affect clustering and are not a silver bullet. Automated methods are available for 

choosing parameters for these approaches. However, the available methods are not robust 

when applied to datasets that contain clusters that are not well separated [62,65].  

The audiograms from DFNA2A also illustrate the problem of visualizing the 

progression of hearing loss within the locus by age. Previously, progression of loci was 

described by an audioprofile (see Chapter 3). However, this falls short of taking 

advantage of all three dimensions that humans are capable of understanding (tonal 

frequency under test, dB loss at each frequency, and age at the time of testing). In the 

methods described below, the audiograms are mapped onto these three dimensions and a 
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surface is fitted to them to aid in visualization and decision-making. This is useful 

because many loci exhibit a strong progression with age and therefore a 20 year old 

patient’s audiograms will not likely not look the same as a 60 year old patient’s 

audiograms taken from the same loci.  

4.3 Methods 

The general approach taken in this thesis for finding subclasses within a given 

locus is a combination of a novel visualization technique and a novel hierarchical 

surface-clustering algorithm. The novel visualization technique fits a surface to the 

audiograms by mapping the 2D audiograms into 3D space based on age and also allows 

these surfaces to be used during clustering. This novel hierarchical surface–clustering 

algorithm performs K-means clustering to initially cluster audiograms based on the 

Figure 12. All the audiograms from the DFNA2A locus. The extreme degree of 
variability creates difficult in visualizing the overall trend with age, and also 
would cause other method of clustering difficulty, such as ones that rely on 
density estimation. 
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“shape” of the hearing loss. The clusters are then transformed into the 3-D surfaces that 

are clustered hierarchically based on similarity. The final clustering is then displayed as 

superimposed sets of cluster surfaces for a human domain expert to evaluate. 

4.3.1 Algorithm 

4.3.1.1 Fitting Audioprofile Surfaces 

Audioprofile surfaces are fitted to audiograms by representing the audiograms in 

three dimensions with discrete frequencies (125, 250 Hz, etc) on the x-axis, the age at 

which the audiogram was measured along the y-axis, and the hearing loss in dB along the 

z-axis. Each audiogram is then transformed into 10 points (the 10 frequencies of the 

audiogram) in the three dimensional space with the x values corresponding the discrete 

frequencies (125=1, 250 Hz=2, etc), the y value for each point is the age at which the 

audiogram was measured, and the z value is the quantified hearing loss at the 

corresponding frequency. Using these points, a surface is fitted with a second-degree 

polynomial along the x-axis (frequency), and a third-degree polynomial along the y-axis 

(age), see equation 4.1. Other possible surface equations are possible, such as exponential 

or logarithmic, and the choice would be depended upon the data. For AudioGene, the 

surface equations were chosen that captures the expected progression and patterns of 

hearing loss that had previously been observed. Least squared regression with bi-squares 

robustness is used to fit the surface equation to the audiograms in 3D space [53]. Once 

the surface equation is fitted to the audiogram points, a synthetic audiogram can be 

generated for a specific age by fixing the age (y-value) and then iterating over the x 

values (frequencies). If there are fewer than ten, but more than five audiograms, the 

polynomial along the y-axis is reduced to second degree as shown in equation 4.2. 

Similarly, if a surface is being fit to a group of fewer than five audiograms, then the 

polynomial on the y-axis is further reduced to a first degree polynomial (equation 4.3). 

By reducing the degree of the polynomial along the y-axis (age) based on the number of 



www.manaraa.com

 50 

audiograms, the surface is effectively smoothed and is more useful during clustering 

when there are fewer number of audiograms. This is because there always must be at 

least one more audiogram than the degree that is being fitted to the audiograms along the 

age axis. The minimum values were chosen because they were approximately double the 

minimum number of audiograms needed for each of the surfaces. The full set of 

equations used for fitting the different surfaces are shown here (equations 4.1-4.3): 

!!!! = !!,! + !!,!! + !!,!! + !!,!!! + !!,!!" + !!,!!!! + !!,!!!! + !!,!!!!!!!!!!!!!!!!! 4.1  

!!!! = !!,! + !!,!! + !!,!! + !!,!!! + !!,!!" + !!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 4.2  

!!!! = !!,! + !!,!! + !!,!! + !!,!!! + !!,!!"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 4.3  

 

A visualization of how the original 2D version of the audioprofile relates to the 3D 

audioprofile surface can be seen in Figure 13. The audioprofile is based on a set of 

example audiograms that were generated for illustrative purposes. When adding the 

average age of each the curves in the audioprofile as a new coordinate in 3D space and 

then performing a perspective change, the original audioprofile can be seen in three 

dimensions with the new axis being age. Plotting the four curves of the audioprofile in 

3D is not very useful but if instead, a surface is fit to the audiograms then the entire 

progression with age becomes visible between the original four curves. 
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Figure 13. A visualization of how the 2D audioprofile relates to the 3D audioprofile. 
Starting in 2D, the new axis that represents age is going into the page. The 
second plot is of the four curves being plotting in 3D space with their 
respective ages as the value on the age axis. Finally, the 3D audioprofile 
surface is shown with the color representing progression of hearing loss in dB 
going from blue (0 dB) to red (130 dB). 
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4.3.1.2 Hierarchical Surface Clustering 

All steps described here are depicted in Figure 14. The first step in hierarchical 

surface clustering (HSC) is to perform K-means clustering on the audiograms with a 

selected initial value of K=K01. Next, any spurious clusters are removed. A spurious 

cluster is defined as a cluster with less than S patients assigned to it2. The next step is to 

repeatedly merge the clusters based on their surface distance until a final clustering of Kf 

is found. The merging is performed as follows:  

(1) A surface is fitted to the audiograms of each cluster using the method 

described in the previous section. This defines the audioprofile surface for each 

cluster i, denoted si, and is called a surface fragment.  Using the surface fragment, 

si, an audiogram can be generated by using the coefficients fitted to the surface 

equation for a specific age, limited by the age range of audiogram data available 

for the cluster. These synthesized audiograms are sampled from each surface and 

used to compute the distance between them. 

(2) The distance is computed between each of the pairs of surface fragments. This 

distance is defined as the minimum Euclidian distance between n sampled 

audiograms from the overlapping age range. If the two surfaces do not overlap, 

then the distance is defined as the Euclidian distance between the audiograms 

closest age in age that are still in the age range of the two clusters. 

(3) The two surfaces with the smallest distance dij between them are merged into a 

single cluster by merging the audiograms from both clusters into a single cluster.  

(4) Steps 1-3 are repeated until the number of surfaces remaining is equal to Kf. 

 

                                                
1 A typical value for K0 used with the current AudioGene dataset is 15. 
2 S likewise had a nominal value of 4 
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4.3.2 Investigating Discovered Subclasses 

If the human hearing loss expert identifies possible subclasses within a locus, a 

series of hypotheses are evaluated to determine the likely cause of the subclasses. Shown 

in Figure 15 is a chart of the possible hypotheses that could be used to explain the 

identified subclasses. Before genetic causes are considered, it is important to rule out any 

environmental causes since they are easily to be ruled out. If there is no likely 

environmental cause, then the next plausible causes to investigate are genetic. These can 

Figure 14. Steps of hierarchical surface clustering (HSC): (1) K-means clustering is 
performed with a K=K0, (2) Clusters that contain less than S patients are 
considered spurious and are removed (3) Audioprofile surfaces are fitted to 
the audiograms in each cluster, (4) Pair-wise surface distances are computed 
between the surfaces, (5) The two closest surfaces (smallest Euclidean 
distance) are merged into a single cluster and the merger is stored; the 
algorithm terminates when only a single cluster remains; otherwise steps 2-4 
are repeated (6) The final clustering for a given C (number of clusters), can be 
retrieved. 
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be more time consuming to evaluate, so again, these are typically evaluated in ascending 

order of the difficulty involved in evaluating the hypothesis based on the data present.  

 

Figure 15. Flow chart of the various hypotheses evaluated after performing HSC. If 
subclasses are found, then the first set of hypotheses are based on the 
environment and are the most likely causes that explain the clusters. If 
environment is not the cause, then the next is genetic. The causes include 
different mutation types, such as truncating or non-truncation mutation 
showing different hearing loss pattern, or mutation in different protein 
domains.   
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4.3.3 Generation of Synthetic Datasets 

Synthetic datasets were generated to evaluate various aspects of the HSC 

algorithm and to compare it with existing clustering techniques. The first step in this 

process was to compute random surfaces based on coefficients similar to those of 

equations used to describe existing (deafness) loci surfaces. Several possibilities were 

explored for the form of these surface equations as seen in equations 4.1-4.3. The 

coefficients were generated randomly from a Gaussian distribution using empirical values 

for mean and standard deviation derived from the corresponding coefficients of all the 

surfaces fitted to each of the loci. For simplicity, and without significant loss of precision, 

the polynomial with quadratic terms along both the age and frequency axes were used as 

seen in equation 4.2. Coefficients were repeatedly generated until a surface was obtained 

that was within the range of possible hearing loss (0-130 dB) for all ages, and represented 

the phenotype of a plausible synthetic genetic cause, e.g. a surface in which hearing 

improved significantly with age would not be plausible. Modifying effects that would 

simulate genetic modifiers or other genetic effects that would modulate the phenotype 

(either increasing or decreasing the impact) could then be applied to the surface by 

modifying selected coefficients of the surface. For instance, to decrease the progression 

with age the p0,1 coefficient could be gradually decreased. Using these surfaces, 

audiograms for the dataset could be sampled for patients of various ages for both cases. 

Finally, to simulate the test-retest variability of 5 dB [9], Gaussian noise was added that 

shifted the audiogram by a mean of 0 and a standard deviation of 2.5. The fraction of 

patients with the various genetic effects could also be controlled.  

4.3.4 Evaluating Clustering 

The performance of the new HSC algorithm was evaluated using the Adjusted 

Rand Index (ARI) for the cases in which a gold standard cluster assignment is known 

[65,68]. The ARI is an appropriate choice for comparing clustering assignments to a gold 
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standard [66]. It compares every pairwise combination of assignments for all instances 

and evaluates them against their corresponding cluster assignment in the gold standard. 

The ARI is based on the Rand Index (RI) [67], but also considers the cluster assignments 

against assignments made by random chance. The metric has a range from -1 to 1. An 

ARI of 1 means that the two cluster assignments are in complete agreement. A rank of 

zero means that the assignments are equal to those made by randomly assigning instances 

to clusters, and less than 0 means that the cluster assignment are worse than those made 

by chance. Large negative values are relatively unlikely in practice and only small 

negative values observed [68]. The ARI is also useful for comparing cluster assignments 

of different number of clusters [66]. A more detailed discussion of the Adjusted Rand 

index can be found in Chapter 3. All ARI values reported here are based on repeating the 

clustering algorithm 10 times, and was done to take into account the possible difference 

is cluster that would be the result of different initial clusters found via K-means.  
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Figure 16. The original surfaces for the two simulated phenotypes for the synthesized 
dataset labeled example 1, and the resulting surfaces found with Kf set to 2.  
The ARI values are based on running the clustering algorithms 10 times. HSC 
had the highest average ARI value of .307, with the median shown for 
illustrative purposes. 

Hierarchal Surface Clustering (HSC) Kf = 2

K-means Kf = 2
Median (.2904 ARI)

Simulated Dataset Example 1 Original Surfaces

Best (.5162 ARI)

Spectral Clustering Kf = 2

Median (.19 ARI) Median (.218 ARI)
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4.4 Results  

4.4.1 Synthetic Dataset 

The first synthetic dataset generated (Example 1) represented a phenotype with a 

strong progression of hearing loss with age across all frequencies. A simulated genetic 

modifier was applied to a portion of the cohort that significantly reduced the progression 

with age. The two surfaces can be seen in Figure 16, and because HSC exhibited more 

variation in the resulting clustering assignment the median and best clustering assignment 

are shown. In practice, a domain expert would repeat the clustering algorithm multiple 

times and likely choose the best one. In contrast, both K-means and HSC found clustering 

assignment that varied only slightly in ARI. Two datasets were generated with different 

proportions of patients containing the genetic modifier. In the first dataset, the two 

portions were equal with a total of 200 patients, and in the second dataset only 20% of the 

patients contained the modifier within a total of 250 patients.  

When Kf was set equal to 2, applied to the datasets with equal proportions, HSC 

had the highest ARI value and therefore obtained clusters that were, on average, more 

similar to the gold standard. The resulting ARI values can be seen in Table 4. For the 

dataset in which the affected proportion was 20%, both spectral clustering and HSC 

showed an increase in ARI but K-means showed worse performance according to the 

ARI; results also shown in Table 4. The cause of the decrease in ARI for K-means was 

likely due to an inherent bias in K-means wherein the clusters found tended to be skewed 

towards clusters of equal size; a phenomenon known as the uniform effect [98]. To 

investigate the effect of using values of Kf larger than the optimal number of clusters, Kf 

was increase to 3, and the resulting ARI values calculated; as shown in Table 2. When 

increasing the value of Kf to 3, the additional cluster for both K-means and spectral 

clustering was composed of a combination of patients from both phenotypes whereas 

HSC found a surface representing an additional cluster of patients from one of the two 
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genotypes. Because the additional cluster found by both K-means and spectral clustering 

contained patients from both genotypes, the ARI was significantly decreased. The 

difference was not as significant for HSC, which had the highest ARI of 0.438 when Kf 

was equal to 3 (see Table 5). 

Hierarchal Surface Clustering (HSC) Kf = 3

K-means Kf = 3
Median (.163 ARI)

Simulated Dataset Example 1 Original Surfaces

Best (.440 ARI)

Spectral Clustering Kf = 3

Median (.123 ARI) Median (.084 ARI)

Figure 17. The result of setting the value of Kf, final number of clusters, to a value larger 
than the optimal number of clusters with Kf set to 3. Both K-means and 
spectral clustering have two surfaces that represent the two different 
genotypes but have an additional surface that is an amalgamation of subsets 
of the two true genotypes. In contrast, HSC finds similar surfaces to those 
found when the value of Kf was set to 2 with an additional surface that 
contains patients from either of the genotypes. 
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The second synthetic dataset, Example 2, simulated a different type of case in 

which a hypothetical genetic modifier created a significant difference in the observed 

phenotype and was not simply an attenuation of the progression with age. The two 

phenotype surfaces can be seen in Figure 18. The surfaces were generated by first 

computing the mean and standard deviation of the coefficients using surfaces fitted to 

each of the loci separately, and then randomly sampling the coefficients independently 

using a Gaussian distribution with the respective mean and standard deviation. Two 

surfaces were generated that were within the bounds of the a phenotype that was 

clinically feasible, i.e. surfaces were rejected that had hearing improving with age and 

were outside the bounds of the decibels measure by an audiogram. On average spectral 

clustering had an ARI of 1, which means that the clustering assignment found was 

Table 4. The Adjusted Rand Index for the synthetic dataset labeled Example 1 both with 
equal proportions of the patients being affected by the genetic modifier and a 
skewed proportion with the genetic modifier only affecting 20% of the 
patients.  

Table 5. Results for the first synthetic dataset, Example 1, when the value of the Kf is 
increased to 3.  

  Equal Size (100/100) Kf=3 
Adj Rand Index Avg Std Dev Min Max 

K-means 0.1226 – – – 
Spectral Clust 0.0836 – – – 

HSC 0.2273 0.1148 0.1175 0.4402 
!

Adj Rand Index Avg Std Dev Min Max Avg Std Dev Min Max
K-means 0.19 0 – – 0.116 – – –

Spectral Clust 0.218 0 – – 0.409 0.019 0.393 0.393
HSC 0.307 0.232 0.066 0.516 0.438 0.111 0.311 0.57

Equal Size (100/100) Kf=2 Skewed Size (200/50) Kf=2

Note: Bold values indicate the algorithm that performed the best and the difference was 
statistically significant. 
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identical to the gold standard. Both K-means and HSC produced average ARI values of 

0.491 and 0.408, respectively. However, the maximum ARI value obtained during the 10 

runs for HSC was 1 and the minimum value was 0.006. By examining the standard 

deviation of HSC (.51) and the ARI values from each of the 10 runs, it was determined 

that HSC alternated between a score of 1 and 0.006, with the latter clustering being found 

slightly more often. In practice, HSC (or any clustering technique) would be performed 

multiple times on a given dataset to determine an acceptable clustering assignment based 

on a human domain expert. While spectral clustering did consistently produce the best 

result, HSC was able to produce the gold standard clustering assignment during at least a 

few of the runs and the best result, in this case, would have been chosen by a domain 

expert if presented with the results from multiple runs as shown in Table 6. Therefore, 

based on the average ARI value spectral clustering performed the best, but because HSC 

was able to find the correct assignment in at least a few of the runs it would be 

appropriate to say that it has comparable performance when paired with a human domain 

expert.  This is not the case for K-means, which never finds the gold standard clustering 

assignments. 

 

Table 6.  Results for the second synthetic dataset, Example 2, with spectral clustering 
having the highest average ARI value.  

  Equal Size Subclasses (100/100) Kf=2 
Adj Rand Index Avg Std Dev Min Max 

K-means 0.4906 0.0145 0.4737 0.5018 
Spectral Clustering 1 – – – 

HSC 0.408 0.51 0.006 1 
!



www.manaraa.com

 62 

 

Hierarchal Surface Clustering (HSC) Kf = 2

K-means Kf = 2
Median (.017 ARI) Best (1 ARI)

Spectral Clustering Kf = 2

Median (.495 ARI) Median (1 ARI)

Simulated Dataset Example 2 Original Surfaces

Figure 18. The results of the three different clustering algorithms on the second 
simulated dataset with two different distinct phenotypes, labeled Example 2, 
with Kf set to 2. Spectral clustering consistently finds the perfect clustering 
assignment across all 10 runs, but HSC appears to alternate between the 
perfect clustering assignment and a poor clustering assignment. K-means does 
not find a perfect cluster and has an ARI of 0.495. 
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The third synthetic dataset created, Example 3, was used for evaluating the case in 

which no genetic modifiers were present and the phenotype was consistent for all 

patients. The surface can be seen in Figure 19 along with the clusters found for each of 

the three clustering algorithms. The ARI value for each of the three clustering algorithms 

was zero and the resulting clusters were highly similar. The value of 0 is a side effect of 

there being only one logical and valid cluster assignment and the way in which the ARI 

value is calculated. The surfaces are shown for the case when Kf is equal to 3. The 

interesting feature to note is the “stair stepping” pattern that represents a progression 

corresponding to age, along with the partial overlapping regions of the surfaces. The 

overlapping regions represent the variability of the phenotype among the patients. 
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Figure 19. The third simulated dataset, labeled Example 3, which contained only a single 
phenotype and genotype. The three clustering algorithms find very similar 
surfaces with equal ARI values of 0 (the effect of having only a single 
cluster). The interesting characteristic is the “stair stepping” pattern is based 
on the progression with age and the overlapping region that corresponds to 
the variability. 
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4.4.2 DFNA9 Locus 

An audioprofile surface was fitted to the audiograms in the DFNA9 locus and the 

resulting surfaces found via HSC can be seen in Figure 20 with a Kf set equal to 3. The 

hearing loss pattern for DFNA9 is a “down-sloping” hearing loss pattern that progresses 

approximately uniformly with age and frequency across all ages and frequencies. There is 

an apparent downward turn of the surfaces at the lower age grouping of 0-20 years, but 

this is likely due to the small number of younger patients and the inter-patient variability 

of their hearing loss. The surfaces found via HSC exhibit the now familiar stair stepping 

pattern, with each stair step indicating greater hearing loss as age increases. Using the 

hypothesis flow chart (Figure 15) to examine the cause of the clustering, the first 

hypothesis to examine is age.  Using an unpaired t-test, the difference in age between 

each of the cluster pairs is statistically significant (p-value< 0.05), and therefore the 

clustering is dominated by age. A plot of the age distribution for each cluster is shown in 

Figure 21. The p-values can be seen in Appendix E. If the value of Kf was increased then 

the resulting surfaces were simply additional stair steps that segregate by disease 

progression and age (also shown in Appendix E). This is consistent with the simulated 

case in which the phenotype is consistent.  

While age is the dominant cause of the clustering found for DFNA9, if the 

progression were uniform for each patient, invalidating an hypothesis based on 

environmental effects, then the resulting cluster surfaces would not overlap and there 

would be no discontinuity between the surfaces. However, for DFNA9 the surfaces do 

overlap and there is a large discontinuity between them. The overlapping regions indicate 

the variability of the progression with age, and are much larger than in the simulated 

case. For instance, there are patients between the ages of 40 and 55 in each of the three 

clusters and therefore the degree of hearing loss ranges from slight to profound deafness. 

While much of this can be attributed to environmental effects, the variability could later 

be used as a means for identifying genetic factors that may be attenuating the observed 
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hearing loss. The results from the DFNA9 locus show an example of how these 

techniques can be used to generate and evaluate molecular discovery hypotheses.  

 

Figure 20. The audioprofile and the three surfaces identified by HSC for DFNA9. The 
surfaces exhibit a “stair stepping” pattern, and this means that the overall 
progression with age of the hearing loss is consistent amongst all the patients 
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4.4.3 DFNA2A Locus 

The audioprofile surface of DFNA2A is shown in Figure 22 along with the results 

of clustering with Kf set to 3. The overall pattern of the hearing loss for DFNA2A also 

shows a “down sloping” hearing loss pattern that exhibits progressively worse hearing 

loss with age that is more pronounced in the higher frequencies. The final value of Kf was 

chosen based on examining the results of setting Kf  to a range of 2 to 5 and visually 

evaluating the clusters. The clustering results for the different values of Kf can be seen in 

Figure 23. When Kf is set to 2, one cluster represents elderly patients with profound 

hearing loss and the other group consists of patients with a mild progression of hearing 

loss. When Kf is increased to 3, the additional surface is distinctly different from the 

progression of the audioprofile as compared to the other surfaces (surface 2 in Figure 22). 

This also modulates the surface that represented milder progression of the disease in the 
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Figure 21. Age distributions of the three clusters found for DFNA9. The distribution 
indicates that the surfaces are clustering primarily based on progression with 
age. 
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higher frequencies. The additional surfaces that are found with increasing values of Kf are 

similar to existing cluster and represent only minor differences of profoundness and not a 

unique pattern of hearing loss. Therefore, the value of 3 was chosen for Kf .   

 

Figure 22. The three audioprofile surfaces found after applying HSC to the audiograms 
in DFNA2A. Surfaces 1 and 3 capture the progression of the hearing loss with 
age in DFNA2A, but surface 2 is drastically different from the other surfaces. 
Upon further investigation, it was determined that surface number 2 
represents the patients with truncating mutations compared to the other 
audioprofile surfaces corresponding to missense mutations.  
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With Kf set to 3, two of the three groups (1 and 3) are likely due to the variably of 

the disease and also differences caused by environmental effects. Surface 1 only contains 

8 patients or 3% of the DFNA2A locus, and all of the patients in the surface exhibit a 

perplexing pattern of hearing loss with the hearing loss values oscillating between 120 dB 

and 130 dB. This strange oscillation is likely due to an artifact from the collection of the 

audiograms or from the interpolation among a small number of audiograms. Regardless 

of the cause, these audiograms should be treated as outliers. The remaining surface has a 

distinctly different progression of hearing loss typified by severe loss of hearing at high 

frequencies. Based on comparing the audioprofile to other surfaces, surface 1 appears to 

represent the typical progression of DFNA2A, but surface 2 seems to be distinctly 

Figure 23. The surfaces found by increasing the value of Kf. The surfaces that are found 
segregate based on progression with the exception of the surface that 
represents the patients with truncating mutations. 
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different. This age distribution of the surfaces is shown in Figure 24. A previous study 

had found that truncating mutations in DFNA2A caused only high frequency hearing loss 

with lower frequency hearing largely preserved compared to missense mutations [6]. The 

number of missense and truncating mutations assigned to each cluster is shown in Table 

7. By performing a chi-squared test, it was determined that clusters were segregating 

significantly based on either truncating or missense mutations (p-value < 0.05). Therefore 

by using the HSC technique, a novel surface was found and upon further investigation a 

previously known phenotypic difference was found without prior knowledge [6]. 
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Figure 24. The age distribution of the three surfaces found for DFNA2A. With the 
exception of cluster 1, the difference between the surfaces cannot be 
attributed to different ages.  
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4.4.4 DFNA8/12 Locus 

The audioprofile for DFNA8/12 is shown in Figure 25. The hearing loss for 

DFNA8/12 is milder overall than for the DFNA2A locus, and does not share a similar 

progression as either DFNA2A or DFNA9. The results of performing HSC with a value 

of Kf equal to 2 are shown in Figure 25. The two surfaces represent patients with mild or 

moderate hearing loss (sub-clusters 1 and 2, respectively). The surfaces do not exhibit the 

familiar stair stepping pattern, as was seen in DFNA2A, DFNA9 or the simulated cases, 

but the difference in age was statistically significant with a p-value of 0.0021 using an 

unpaired t-test. If the age range is matched to a range of 0 to 40, then the difference was 

not statistically significant with a p-value of 0.1158. The distribution of ages of the 

surfaces is shown in Figure 26. The larger age range of the second cluster could be the 

result of a collection bias; i.e., this locus only contains 61 patients (2 were removed as 

spurious clusters). Alternatively, if it is hypothesized that the two clusters are the result of 

different genetic causes and the milder cluster’s genetic cause exhibited a progression 

with age, then the older patients with that genetic cause would likely be assigned to the 

second cluster. Because of these two possibilities, the difference cannot be entirely 

attributed to age. Other environmental factors could also contribute to the difference in 

observed hearing loss, but because the patients are younger and there does not appear to 

 

  Surface Clustering 
  Number For Mutation Type   

Cluster  Missense Truncating Total 
1 7 1 8 
2 5 25 30 
3 45 14 59 

Total 57 40 97 

Table 7. Number of patients by mutation type assigned to each of the three clusters for 
DFNA2A. 
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be any difference attributable to gender, this leads to the logical possibility of a genetic 

cause. 

The first hypothesis to evaluate is that the clusters segregate based on mutation 

type. The DFNA8/12 locus consisted only of missense mutations, with the exception of a 

family with a compound truncating and missense mutation. The hypothesis that the 

clusters were assigned based on the mutation type was not found to be statistically 

significant using a Fisher’s exact test (p-value<0.05). Next, we consider the resolution at 

the level of the mutations. The mutations, along with their domains, and the number of 

patients assigned to each cluster are shown in Table 5. Performing a Fisher’s exact test, it 

was found that the difference was not statistically significant with a p-value of .1754. 

Therefore, the clusters were not significantly different in terms of mutation domain. 

Based on the hypothesis chart in Figure 15, all but the last two genetic causes should be 

ruled out. Interestingly, the DFNA8/12 locus contains the TECTA gene and all the 

mutations in the dataset were from the TECTA gene. TECTA is expressed as α-tectorine 

and is important component ofthe tectorial membrane (TM). There other non-colligen 

proteins that form the TM are ß-tecotrian and otogelin [99]. There have been no reported 

mutations in TECTB, which encodes for ß-tecotrian, and only recently has OTOG, which 

encodes for otogelin, been identified as a likely cause of deafness in a single family 

[100]. Since these proteins are known to interact with each other to form the TM, one 

possible cause of the observed difference in phenotype are mutations with in TECB or 

OTOG. There also four collagen types that are expressed in the TM, types II, V, IX, and 

XI [101]. Further in-vivo studies are needed to attempt to identify any mutations these 

other genes that could be truly causing the observed difference in the phenotype. 
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Figure 25. Audioprofile for DFNA8/12 along with the results of applying HSC with Kf 
set to 2. The audioprofile shows only slight hearing loss in the low and high 
frequencies with a valley of mild hearing loss in the mid-frequencies.  There 
is a slight progression with the hearing loss going from slight to mild hearing 
loss in the higher frequencies. The surfaces found for the DFNA8/12 locus 
cluster based on severity of hearing loss. 
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Figure 26. Age distribution of the two DFNA8/12 surfaces, and when matched for the 
age range there is no difference that can be attributed to age. 
  

     
     Mutation Domain 1 2 Total 

p.C1057S Trypsin inhibitor-like repeat 2 0 2 
p.C1837G ZP 1 2 3 
p.C1837R ZP 1 4 5 
p.C1898R ZP 1 0 1 
p.D197N Partial entactin G1 domain 0 3 3 
p.P1791R Interdomain sequence 0 1 1 
p.R1890C ZP 11 4 15 
p.R2021H ZP 2 2 4 

p.S1758Y/G1759_N1795del Interdomain sequence 3 12 15 
p.S362C vWF type D repeat 0 1 1 

p.T1866M ZP 0 4 4 
p.T1866R ZP 0 1 1 
p.T562M Interdomain sequence 1 0 1 
p.T815M vWF type D repeat 1 0 1 
p.V317E Interdomain sequence 0 1 1 

 
ZP 16 17 33 

 
Other 7 18 25 

  Total 23 35 58 
     
     
     
     

 

Table 8. DFNA8/12 clustering assignments based on mutation and domain of mutation.  

Note: The clustering does not associate based on domain of the protein (p-value=.175). 
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4.5 Discussion 

Based on the analysis of the simulated datasets and the actual data from three 

different loci above, HSC appears to be an effective clustering technique for discovering 

subclasses within a useful category of datasets. The results for DFNA9 illustrate an 

example of a phenotype that is relatively consistent with the resulting cluster surfaces 

exhibiting a stair stepping pattern based on age and progression. This conforms to the 

expected results found for the example 3 simulated dataset. Clustering of the DFNA2A 

locus verified the capabilities of HSC to find a known subclass that was previously 

reported[6]. Applying HSC to DFNA8/12 demonstrated the ability of the method to be 

utilized as a hypothesis-generating tool. All possible hypotheses of both environmental 

and genetic causes of the clustering that were easily tested were ruled out, leaving 

possible genetic causes such as interacting genetic components as likely explanations that 

could then be followed up with manual wet-lab or in-silico verification.  

4.5.1 Generalization 

In general terms, the hierarchical surface-clustering algorithm described is 

considered a variation on single-linkage clustering because the criteria for merging 

clusters is defined as the minimum distance between the surfaces. While the application 

described in this thesis was focused on audiometric data with surfaces in three 

dimensions, it could be extended to other applications. For higher dimensional data where 

the surfaces would be hyperplanes, the merging of clusters would be done in the same 

manner as surfaces in three dimensions. The limiting factor would be the visualization of 

the clusters in three dimensions which could be accomplished through various 

dimensionality reduction techniques such as principle component analysis [102]. Other 

distance metrics could be used in place of the Euclidean distance, and one such distance 

metric is the Mahalanobis distance [103] that considers the variable of the data along with 

the Euclidian distance . 
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4.5.2 Comparing Against Other Clustering Techniques 

Using a Known Subclasses 

While this method appears to be effective at finding novel subclasses in the 

AudioGene dataset and performs better in two out of the three simulated cases than K-

means and spectral clustering. Ideally, the performance of HSC would be compared using 

cases of known subclasses within the AudioGene dataset. In order to evaluate the 

performance, ground truth must be known. For the AudioGene dataset, there is little 

ground truth for evaluating subclasses. The only currently available ground-truth in the 

dataset is based on the results of DFNA2A, which showed that the phenotypes for 

truncating and missense mutations were significantly different and had previously been 

reported in the literature [6]. The ground truth of the mutation type for each DFNA2A 

patient is known and can be used as the gold standard to compare cluster assignments 

from different clustering techniques. Patients with truncating mutations are assigned to 

one cluster and the remaining patients assigned to a different cluster.  

The average ARI for 10 runs with Kf set to a range of 2 to 5 for HSC, K-means, 

and spectral clustering for DFNA2A can be seen in Table 9. The resulting surfaces for the 

various values of Kf for each of the clustering algorithms are shown in Figure 27. 

Overall, HSC with Kf set to 3 had the highest ARI value of 0.459, and was significantly 

better than the other clustering algorithms. The ARI value for both K-means and spectral 

clustering significantly increases when Kf is set to 4 because the surface that represents 

the patients with the truncation mutations is finally found. However, the ARI values are 

still significantly less than HSC even when Kf is also equal to 4 for HSC. 

Visual inspection of the clusters in Figure 27 reveals that HSC finds the 

truncating phenotype surface when Kf is set to 3, and the same surface appears when Kf is 

set to 4 for both K-means and spectral clustering. This explains the previous result when 

comparing ARI between the various clustering techniques and values for Kf. Spectral 

clustering appears to be somewhat sensitive to the progression of hearing loss based on 
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age, and exhibits a similar stair stepping pattern to the clusters of DFNA9. The initial 

cluster assignments by HSC and spectral clustering were the same, but diverged as Kf 

was increased.  Both HSC and K-means find a continuous surface that spans almost the 

entire range of ages but a similar surface does not appear for spectral clustering until Kf 

equals 5.  Another interesting difference is noted when Kf is equal to 5. The new surface 

found by K-means displays approximately the same shape as the existing surface but 

indicates approximately 5 dB less hearing loss. In contrast, HSC reveals a surface that has 

a different shape with patients having less pronounced hearing loss in the mid frequencies 

as does the corresponding cluster in the case of K-means. 

Overall, based on quantitative and qualitative measures, HSC performs better than 

K-means and spectral clustering for the case of DFNA2A and the simulated dataset. 

While this is not an exhaustive comparison between all clustering methods, it does appear 

that HSC improves upon K-means and spectral clustering. It has been demonstrated, 

however, that HSC is capable of generating hypotheses and has the potential to perform 

better than other commonly used clustering algorithms. 

 

 

 

 

 

  Number of Clusters 
  2 3 4 5 

Surface Clustering -0.015 (0.01) 0.459 (0) 0.417 (.055) 0.286 (.081) 
K-means 0.052 (0) 0.018 (0.001) 0.103 (.04) 0.092 (.01) 

Spectral Clustering -0.01 (0) 0.068 (0) 0.187 (0) 0.131 (.001) 

 

Table 9. The results of varying Kf for the DFNA2A truncating versus missense mutation 
evaluation set.  
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4.5.3 Audioprofile surfaces 

No previously known attempts have been made to fit three-dimensional surfaces 

to audiograms based on age. The current 2D form of the audiogram with decibels 

represented in descending order on the vertical y-axis and frequencies along the 

horizontal x-axis has remained relatively unchanged since it was first developed and 

refined in the mid 1920’s [13,104]. The previous method for displaying progression of 

Figure 27. Comparison of the surfaces found by both HSC and K-means for the 
DFNA2A locus. Overall, the surfaces found are very similar with the 
exception to the first surface shown. For K-means, the first surface is very 
similar to the last surface of K-means, whereas HSC identifies a very 
different surface from others found. 
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hearing loss with age was the audioprofile, which superimposed average audiograms over 

20 year intervals. By adding the third dimension to the audiogram and generating 

audioprofile surfaces, the progression of frequency based upon age becomes more 

apparent. As can be seen from the results, there are clear inter-loci differences in 

progression of the audioprofiles. 

Another advantage of the audioprofile surface is the ability to visualize the 

resulting clusters and generate hypotheses that would have been difficult to generate 

otherwise. For instance, in the results for DFNA9 with Kf set to 3 it was observed that the 

surfaces had a stair stepping pattern in which the surfaces overlapped considerably. For 

surfaces that represent clusters 1 and 2 the overlap spanned 40 years (see Figure 9). 

While this can been seen from the age distribution, it also can be readily seen in the 

audioprofile surfaces along with the maximum difference between the two surfaces of 

approximately 40 dB. These patients that lie in these overlapping regions show the 

variability in the progression of the disease but could be further investigated for genetic 

modifiers that significantly modulate the hearing loss, assuming that environmental 

causes can be ruled out. 

4.5.4 Parameter Choice for Surface Clustering 

The behavior of the HSC algorithm can be tuned using three parameters: K0, Kf, 

and S. K0 defines the number of initial clusters, Kf is the final number of clusters and S is 

the minimum number of audiograms that a cluster must contain without being considered 

spurious and removed. The value of K0 is bounded by N – the number of patients in a 

dataset–and Kf. Setting K0 to be equal to Kf reduces the algorithm to K-means. If the 

value of K0 is too large, then a significant portion of the patients would become singleton 

or small clusters and be removed because of S. Even if S were equal to 0, the singleton or 

small clusters would have distinct shapes, by virtue of being spurious, and remain 

throughout the merging steps of HSC and contaminate the results. On the other side, if K0 
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is too small then the uniform effect of K-means will likely cause it to not find subclasses 

that consist of only of a relatively small portion of the class, similarly to the skewed case 

for the first synthetic dataset. Ideally, the value of K0 should be large enough to overcome 

the uniform effect but small enough that any truly spurious clusters would be removed by 

S and at least one or more of the remaining cluster would represents any subclasses.  

Another way to interpret K0 is as the number of “prototype” surfaces that are 

initially generated. After each iteration of the HSC, the two most similar surfaces are 

merged. Ideally, K0 is large enough to find interesting prototype surfaces, but small 

enough that only a few or none of the clusters can be attributed to noise while novel 

cluster surfaces still remain. K0 also controls indirectly the smoothness of the initial 

prototype surfaces.  Setting K0 to higher values increases the likelihood of finding 

spurious clusters that are distinctively shaped but which may show discontinuities. 

Because of their distinctive shape, they may be resistant to being merged with other 

surfaces and likely persisting throughout most iterations of the algorithm. Therefore, the 

parameter S is needed to remove clusters that do not have much support in terms of the 

number of patients. After the initial K-means clustering is performed, the similarity of the 

surfaces is based purely upon shape, while the size of clusters is no longer considered. 

Through trial and error, the value of 15 was chosen for K0 because it resulted in 

interesting clusters for most loci studied, while few spurious clusters were found that 

appeared to be truly spurious upon inspection with S set to 4.  

4.5.5 Attributes of Surface Clustering 

HSC outperformed or had comparable performance to both K-means and spectral 

clustering in both the simulated cases and the DFNA2A test case. The reason for the 

improvement is likely due a few features of the HSC algorithm itself. First, representing 

the audiograms in each cluster as surfaces has a smoothing effect on the audiograms but 

the surface captures the general pattern of the hearing loss. As an example, the 3D 
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audioprofile of a cluster with the audiograms superimposed can be seen in Figure 28. The 

cluster came from the initial clustering of K-means during HSC for DFNA2A. For this 

cluster, all the audiograms are similar in progression but have some slight variability–but 

the surface is capturing the overall shape. This also has a secondary benefit of reducing 

majority class effects of a large cohort of patients having a similar genotype and a 

relatively small number of patients with a genetic modifier that has a significant effect on 

the phenotype. Therefore the overall shape becomes the overriding feature. In contrast, 

K-means exhibited poor performance when a disproportionate number of patients had a 

genetic modifier. This was observed in the synthetic dataset example 1 where the 

proportion of patients with the modifier was skewed (see Table 4).  

One aspect that still needs further research is in how best to handle multiple 

audiograms. For the analysis of the AudioGene loci, the audiograms were averaged for 

patients with multiple audiograms but this likely creates an age bias that could be limiting 

performance. Note that not all patients contained multiple audiograms and over 63% of 

the patients had only a single audiogram. Even for the patients with multiple audiograms 

the average age span of the audiograms was 13 years. To handle multiple audiograms, K-

means would need to be modified to cluster multi-instance datasets, but the remaining 

steps of HSC would remain relatively unchanged. 

Another aspect of HSC is that it explicitly considers age whereas spectral 

clustering and K-means only use it as one of many equally weighted features. By 

computing the distance from only the overlapping region or for patients of similar ages 

between the two surfaces, only the region that is most likely to be similar is considered. 

This means that if there is a strong progression with age, then the regions of the surfaces 

that are considered during the distance computation are only the regions that are likely to 

have similar hearing loss. For example, in the case of DFNA9 with a strong progression 

with age, surface 2 in Figure 9 represents the younger patients and surface 3 represents 

the older patients. The patients on the extreme of the ages (around age 0 and 70) would 
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have drastically different hearing loss and it would not make sense to compare them to 

each other. With spectral clustering the difference this causes during the clustering can be 

seen in the results of DFNA2A, Figure 16, for values of Kf greater than or equal to 2 with 

the stair stepping pattern of the middle surface. In contrast, both K-means and HSC have 

a continuous surface for the patients with the standard pattern of hearing loss for 

DFNA2A, surface 3 in Figure 11. 

 

4.5.6 Incorporating DFNA2A Result into AudioGene 

From the results of DFNA2A a phenotypic difference was found between patients 

with missense and truncating mutations. Based on this difference, the DFNA2A patients 

in the AudioGene dataset were split into two subclasses DFNA2A_miss and 

DFNA2A_trunc. Ten rounds of 10-fold cross-validation were ran in order to determine 

the accuracy and ROC values, as in same major as the previous chapter. The results of the 

Example Cluster With Audiograms

Figure 28. Example cluster with the surface and audiograms assigned to that cluster 
superimposed. The surface and clusters are from the initial clustering with K0 
set to 15 for DFNA2A, before surfaces are merged. As can be seen, the 
surface captures the general shape of the audiograms. 



www.manaraa.com

 83 

original data and the new dataset with the DFNA2A subclasses can be seen in Table 10. 

While the average accuracy did decrease slightly from 42.89% for the original dataset to 

41.84% with the new subclasses, the difference was not statistically significant (p-value < 

0.05). However, the average weighed AUC value was equal for both datasets and had a 

value of 0.81. Interestingly, by examining the confusion matrix from one of the cross-

validation runs, the number of correctly classified DFNA2A_trunc was 24 and 16 were 

incorrectly classifier. Comparing the number correctly classified for DFNA2A_trunc to 

the number of truncating patients found in cluster 2 during the HSC, shown in Table 7, 

the number of patients is only differs by 1. This similarity between HSC and the classifier 

used in AudioGene, indicates that approximately 25 patients with truncating mutations 

had a strong phenotypic difference but for the remaining 16 other the difference was not 

sufficient enough to be able to distinguish. This furthermore indicates that HSC likely 

found the largest cluster of DFNA2A truncating that could be found given the current 

DFNA2A patients. Finally, this result also reinforces the initial observation that accuracy 

is a not an effective method to determine if a class should be spit, and had accuracy been 

the metric it would have been concluded that the class should not have been split. Also, 

more informative predictions can now be made for DFNA2A without sacrificing 

accuracy. 



www.manaraa.com

 84 

4.6 Conclusion 

In this chapter, a new clustering technique was described called hierarchal surface 

cluster (HSC), and was shown to perform better or have comparable performance to two 

existing clustering technique when clustering hearing loss data. Simulated datasets were 

used to initially evaluate the performance, and then using the results of DFNA2A as a 

gold standard it was further shown that HSC performed better than the other clustering 

techniques evaluated. To visualize the clusters of audiograms found, a technique of 

plotting the audiograms as surfaces in 3D was also developed. This technique is useful 

for plotting the results of HSC, but is also useful for showing the audioprofile in 3D to 

visualize the progression with age of different frequencies that is different for each locus. 

The results of DFNA2A demonstrated that the clustering technique could identify 

subgenotypes based on the phenotype. The identified subgenotypes were then used to 

define new subclasses in the AudioGene dataset. By performing cross-validation using 

with the new subclasses for DFNA2A, no statistically significant difference in accuracy 

or AUC was found. For the case of DFNA9, no subclasses were identified but clusters 

appeared to be based on the age of the patient and exhibited a stair stepping pattern based 

on progression and age, which was similar to the third synthetic dataset. Finally, the use 

of HSC as a hypotheses generating tool was shown based on the results of DFNA8/12. 

Two clusters were found which appear phenotypically different but no easily testable 

Dataset Accuracy AUC
Original Dataset  42.89 (2.99) 0.81 (0.02)

Dataset with DFNA2A Subclasses 41.84 (2.74) 0.81 (0.02)

Table 10. Comparison of accuracy and AUC values for the original dataset and the 
dataset with the DFNA2A subclasses. 
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cause was identified. This leaves other possible causes such as mutations in interacting 

partner proteins that will require additional in vivo studies to be undertaken. 

Simulated datasets were generated to evaluate and test different cases of genetic 

modifiers affecting the phenotype and allowed for a quantitative comparison between the 

different clustering techniques. In the first synthetic dataset, HSC obtained the highest 

ARI value, while spectral clustering consistently found the correct clustering assignment 

for the second synthetic dataset. HSC alternated between the correct clustering 

assignment and an incorrect assignment that had a low ARI value, and since in practice 

the clustering algorithm would be repeated it can be said to have comparable 

performance to spectral clustering. Using the results of DFNA2A to create a gold 

standard clustering assignment with the missense and the truncating patients in separate 

clustering, HSC had the highest ARI value of 0.459.  
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CHAPTER 5 

CONCLUSION 

The main goal of the thesis was to apply machine-learning techniques for 

predicting the genetic cause of patients with a genetic disorder based on the phenotype of 

the disease, and leverage the phenotype to discover subgenotypes - specifically for Non-

syndromic Hearing Loss (NSHL). The problem was tackled using two different 

approaches; first using supervised learning techniques and then developing an 

unsupervised technique called Hierarchal Surface Clustering (HSC) to explore the 

phenotype space to infer undiscovered genetic causes. 

In Chapter 3 supervised machine learning techniques were used to develop a 

pipeline, called AudioGene, for the prediction of Autosomal Dominant Non-syndromic 

Hearing Loss (ADNSHL) loci. The phenotypic features used were audiograms, which are 

plots of the patient’s hearing loss. The audiograms were preprocessed before use in 

AudioGene by filling in missing values and using the coefficients of second and third 

degree polynomials as secondary features. The accuracy of predicting the top three 

candidate loci was 68% when using an MI-SVM, compared to 44% using a Majority 

classifier. A noise model was developed using the discrete cosine transform (DCT) based 

on the test-retest variable that is expected during the measurement of the audiograms. 

Using the noise model it was shown that AudioGene did not suffer significant 

performance degradation under the expected test-retest variably. 

The techniques developed for predicting ADNSHL loci were also applied to 

Autosomal Recessive Non-syndromic Hearing Loss (ARNSHL), however the only 

dataset available contained only mutations for patients with mutations in DFNB1 (GJB2). 

A large class imbalance also exists in this dataset, with patients with the 35delG 

homozygous mutation accounting for approximately 91% of the dataset. To reduce the 

effects of the class imbalance, the mutations were relabeled as homozygous truncating 
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(T/T) or “Other” which included patients with heterozygous truncating/missense and 

homozygous missense mutations. The T/T patients were down-sampled to be of equal 

size to the “Other” class and the average accuracy of 100 runs of cross-validation was 

83% for the MI-SVM compared to 50% for a Majority classifier. The accuracy of 

predicting the patients removed during down-sampling using a classifier trained on the 

down-sampled dataset was 88%. 

While AudioGene was originally developed for the prioritization of loci and 

genes for Sanger sequencing, it is equally applicable when High Throughput Sequencing 

(HTS) is used. When using HTS, even after post-sequencing filtering steps, the number 

of variants of unknown significance (VUS) remaining can be quite large. AudioGene can 

serve as either a phenotypic filter tool or as a phenotypic concordance check. The latter 

case applies in the cases where increased evidence of a VUS being suspected as the 

putative mutation is needed. The pipeline is available to the pubic at 

http://audiogene.eng.uiowa.edu, and all analyses are performed on a CBCB webserver 

and do not require any special software to be downloaded by the user. 

In Chapter 4, an unsupervised technique called Hierarchal Surface Clustering 

(HSC) was developed to further explore the relationship between phenotypes of NSHL 

and genotypes. Particularly of interest were subgenotypes that caused differences in the 

manifestation of the disease phenotype such as different mutation types and mutations in 

interacting partners of the gene. The technique uses 3D surfaces fitted to clusters of 

audiograms, which are based on an initial clustering by K-means, and then repeated 

merging using their surface distances. Using simulated datasets where the effect of the 

subgenotype and phenotype are known, it was shown that HSC performed better or had 

comparable performance when evaluating using the Adjusted Rand Index (ARI) metric.  

Applying HSC to three loci (DFNA2A, DFNA8/12 and DFNA9) demonstrated its 

usefulness as a means to finding subgenotyes and as a hypothesis-generating tool. For 

DFNA2A, a cluster was found that was determined to be representing patients with 
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truncating mutations. This subtype was previously known in the literature but was found 

without prior knowledge of the previously published literature. Two clusters were found 

for DFNA8/12 that represented differences in hearing loss that could not be attributed to 

any known causes and further in vivo studies are needed to determine the genetic cause of 

the phenotypic difference. No subgenotypes were found for DFNA9, but an interesting 

stair stepping pattern was observed that was related to the progression of the hearing loss 

with age.  

Based on the results of DFNA2A analyses, a gold standard clustering assignment 

was created based on the mutation types of the patients and used to compare the different 

clustering techniques using real world data. HSC had the highest ARI with a value of 

0.459 compared to 0.187 for spectral clustering and 0.103 for K-means clustering. HSC 

also found the surface that represented the patients with truncating mutations when Kf 

was set to 3, compared to both spectral clustering and K-means that successfully found 

this surface when Kf was set to 4. Finally, the performance of AudioGene was evaluated 

when using the subgenotypes as new class labels for DFNA2A and the accuracy found to 

not decrease significantly going from 44% to 43%. By using the new class labels 

DFN2A, AudioGene can make more informative predictions for DFNA2A without 

sacrificing accuracy. 

The main goal of this thesis was to apply machine-learning techniques for 

predicting the genetic cause of a patients genetic disorder based on the phenotype of the 

disease – specifically NSHL. The problem was tackled using two different approaches; 

first using supervised learning techniques and then developing an unsupervised technique 

called Hierarchal Surface Clustering (HSC) to explore the phenotype space to infer 

undiscovered genetic causes. 
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APPENDIX A. AVERAGE AUDIOGRAMS WITH ERROR BARS 

 

Figure A1. The average audiograms from Figure 1 with error bars representing one 
standard deviation added. 
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APPENDIX B. DATASET COMPOSITION 

Note: Patients can have multiple audiograms taken at different ages. 

 

Table B1. Number of patients and audiograms for each locus before preprocessing.  
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APPENDIX C. AUDIOGENE ROC CURVES 
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Figure C1. ROC curves for each locus for each classifier generate from a single 10-fold 
cross validation. AUC values are shown in the parentheses for each classifier. 
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APPENDIX D: AUDIOGENE OUTLIERS DISTRIBUTION 

 

Figure D1. The chart illustrates the number of patients for each locus that might be 
considered an outlier (red) along with the number of patients that were not 
considered outliers (black).   
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APPENDIX E. ADDITIONAL HSC RESULTS FOR DFNA9 

 

Cluster A Cluster B P-Value 
1 2 3.35E-22 
1 3 6.81E-16 
2 3 5.63E-42 

 

Table E1. P-Values of using an un-paired t-test for comparing the ages of the clusters 
found for DFNA9 when using HSC with Kf set to 3.  

DFNA9 Four Clusters

DFNA9 Audioprofile

Figure E1. The surfaces when Kf is set to 4. Even with four clusters, the surfaces from a 
stair stepping pattern that segregate based on age. 


	Machine learning approaches for predicting genotype from phenotype and a novel clustering technique for subgenotype discovery: an application to inherited deafness
	Recommended Citation

	Microsoft Word - FinalPrelimPages.docx

